ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 9.3
March 13, 2018

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 13, 2018

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.1 Introduction

1 ERTS User's Guide

1.1 Introduction

1.1.1 Scope
The Erlang Runtime System Application, ERTS, contains functionality necessary to run the Erlang system.

By default, ERTS is only guaranteed to be compatible with other Erlang/OTP components from the same release
as ERTS itself.

For information on how to communi cate with Erlang/OTP componentsfrom earlier rel eases, see the documentation
of systemflag +Riner!| (1).

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 Communication in Erlang

Communication in Erlang is conceptually performed using asynchronous signaling. All different executing entities,
such as processes and ports, communicate through asynchronous signals. The most commonly used signal isamessage.
Other common signals are exit, link, unlink, monitor, and demonitor signals.

1.2.1 Passing of Signals

The amount of time that passes between a signal is sent and the arrival of the signal at the destination is unspecified
but positive. If the receiver has terminated, the signal does not arrive, but it can trigger another signal. For example, a
link signal sent to a non-existing process triggers an exit signal, which is sent back to where the link signal originated
from. When communicating over the distribution, signals can be lost if the distribution channel goes down.

The only signal ordering guarantee given is the following: if an entity sends multiple signals to the same destination
entity, the order is preserved; that is, if A sends asignal S1 to B, and later sends signal S2 to B, S1 is guaranteed
not to arrive after S2.

1.2.2 Synchronous Communication

Some communication is synchronous. If broken down into pieces, a synchronous communication operation consists of
two asynchronous signals; one request signal and one reply signal. An example of such asynchronous communication
isacall to erl ang: process_i nf o/ 2 whenthefirst argumentisnot sel f () . The caller sends an asynchronous
signal requesting information, and then waits for the reply signal containing the requested information. When the
reguest signal reaches its destination, the destination process replies with the requested information.

1.2.3 Implementation

The implementation of different asynchronous signals in the virtual machine can vary over time, but the behavior
always respects this concept of asynchronous signals being passed between entities as described above.

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

By inspecting the implementation, you might notice that some specific signal gives astricter guarantee than described
above. It is of vital importance that such knowledge about the implementation is not used by Erlang code, as the
implementation can change at any time without prior notice.

Examples of major implementation changes:

e Asfrom ERTS5.5.2 exit signals to processes are truly asynchronously delivered.
e Asfrom ERTS5.10 all signals from processes to ports are truly asynchronously delivered.

1.3 Time and Time Correction in Erlang

1.3.1 New Extended Time Functionality

Asfrom Erlang/OTP 18 (ERTS 7.0) the time functionality has been extended. This includes a new API for time
and time warp modes that change the system behavior when system time changes.

The default time war p mode has the same behavior as before, and the old API still works. Thus, you are not required
to change anything unless you want to. However, you ar e strongly encour aged to usethe new API instead of the
old APl based oner | ang: now 0. er| ang: now O isdeprecated, asit isand will be a scalability bottleneck.

By using the new API, you automatically get scalability and performance improvements. This also enables you to
use the multi-time warp mode that improves accuracy and precision of time measurements.

1.3.2 Terminology

To make it easier to understand this section, some terms are defined. Thisis a mix of our own terminology (Erlang/
OS system time, Erlang/OS monotonic time, time warp) and globally accepted terminology.

Monotonically Increasing

In a monotonically increasing sequence of values, al values that have a predecessor are either larger than or equal
to its predecessor.

Strictly Monotonically Increasing

In a strictly monotonically increasing sequence of values, al values that have a predecessor are larger than its
predecessor.

UTl

Universal Time. UT1 is based on the rotation of the earth and conceptually means solar time at 0° longitude.

uTC

Coordinated Universal Time. UTC amost aligns with UT1. However, UTC uses the Sl definition of a second, which
has not exactly the same length as the second used by UT1. This means that UTC slowly drifts from UT1. To keep
UTC relatively in sync with UT1, leap seconds are inserted, and potentially also deleted. That is, an UTC day can be
86400, 86401, or 86399 seconds long.

POSIX Time

Timesince Epoch. Epoch isdefined to be 00:00:00 UTC, 1970-01-01. A day in POSIX timeisdefined to be exactly
86400 seconds long. Strangely enough, Epoch is defined to beatimein UTC, and UTC has another definition of how
long aday is. Quoting the Open Group " POSI X timeistherefore not necessarily UTC, despiteits appearance” .
The effect of thisis that when an UTC leap second is inserted, POSIX time either stops for a second, or repeats the

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

href
href
href

1.3 Time and Time Correction in Erlang

last second. If an UTC leap second would be deleted (which has not happened yet), POSIX time would make a one
second leap forward.

Time Resolution
The shortest time interval that can be distinguished when reading time values.

Time Precision

The shortest time interval that can be distinguished repeatedly and reliably when reading time values. Precision is
limited by the resolution, but resolution and precision can differ significantly.

Time Accuracy

The correctness of time values.

Time Warp

A timewarp is aleap forwards or backwardsin time. That is, the difference of time values taken before and after the
time warp does not correspond to the actual elapsed time.

OS System Time

The operating systems view of POSIX time. To retrieveit, call os: system ti me() . Thismay or may not be an
accurate view of POSIX time. This time may typically be adjusted both backwards and forwards without limitation.
That is, time warps may be observed.

To get information about the Erlang runtime system's source of OS system time, call
erl ang: system.info(os_systemtime_source).
OS Monotonic Time

A monotonically increasing time provided by the OS. This time does not leap and has a relatively steady frequency
although not completely correct. However, it isnot uncommon that OS monotonic time stopsif the systemis suspended.
This time typically increases since some unspecified point in time that is not connected to OS system time. This type
of time is not necessarily provided by all OSs.

To get information about the Erlang runtime system's source of OS monotonic time, call
erl ang: system.info(os_nonotonic_tinme_source).

Erlang System Time

The Erlang runtime systems view of POS X time. Toretrieveit, call er | ang: system ti me().

This time may or may not be an accurate view of POSIX time, and may or may not align with OS system time. The
runtime system works towards aligning the two system times. Depending on the time warp mode used, this can be
achieved by letting Erlang system time perform atime warp.

Erlang Monotonic Time

A monotonically increasing time provided by the Erlang runtime system. Erlang monotonic time increases since some
unspecified point in time. To retrieveit, call er| ang: nonotoni c_tinme().

The accuracy and precision of Erlang monotonic time heavily depends on the following:

e Accuracy and precision of OS monotonic time
e Accuracy and precision of OSsystemtime
e timewarp mode used

On a system without OS monotonic time, Erlang monotonic time guarantees monaotonicity, but cannot give other
guarantees. The frequency adjustments made to Erlang monotonic time depend on the time warp mode used.

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Internally in the runtime system, Erlang monotonic time is the "time engine" that is used for more or less everything
that has anything to do with time. All timers, regardlessof itisar ecei ve ... after timer, BIFtimer, or atimer
inthet i mer (3) module, are triggered relative Erlang monotonic time. Even Erlang systemtime is based on Erlang
monotonic time. By adding current Erlang monotonic timewith current time offset, you get current Erlang systemtime.

To retrieve the current time offset, call erl ang: ti ne_of f set/ 0.

1.3.3 Introduction

Timeis vital to an Erlang program and, more importantly, correct time isvita to an Erlang program. As Erlang isa
language with soft real -time properties and we can expresstimein our programs, the Virtual Machine and the language
must be careful about what is considered a correct time and in how time functions behave.

When Erlang was designed, it was assumed that the wall clock time in the system showed a monotonic time moving
forward at exactly the same pace as the definition of time. This more or less meant that an atomic clock (or better time
source) was expected to be attached to your hardware and that the hardware was then expected to be locked away from
any human tinkering forever. While this can be a compelling thought, it is ssmply never the case.

A "normal" modern computer cannot keep time, not on itself and not unless you have a chip-level atomic clock wired
to it. Time, as perceived by your computer, must normally be corrected. Hence the Network Time Protocol (NTP)
protocol, together with the nt pd process, does its best to keep your computer time in sync with the correct time.
Between NTP corrections, usually aless potent time-keeper than an atomic clock is used.

However, NTP is not fail-safe. The NTP server can be unavailable, nt p. conf can be wrongly configured, or
your computer can sometimes be disconnected from Internet. Furthermore, you can have a user (or even system
administrator) who thinks the correct way to handle Daylight Saving Timeisto adjust the clock one hour two times a
year (which isthe incorrect way to do it). To complicate things further, this user fetched your software from Internet
and has not considered what the correct time is as perceived by a computer. The user does not care about keeping the
wall clock in sync with the correct time. The user expects your program to have unlimited knowledge about the time.

Most programmers al so expect timeto bereliable, at least until they realizethat thewall clock time on their workstation
is off by aminute. Then they set it to the correct time, but most probably not in a smooth way.

The number of problems that arise when you always expect the wall clock time on the system to be correct can be
immense. Erlang therefore introduced the "corrected estimate of time", or the "time correction”, many years ago.
The time correction relies on the fact that most operating systems have some kind of monotonic clock, either areal-
time extension or some built-in "tick counter" that is independent of the wall clock settings. This counter can have
microsecond resolution or much less, but it has a drift that cannot be ignored.

1.3.4 Time Correction

If time correction is enabled, the Erlang runtime system makes use of both OS system time and OS monotonic time,
to adjust the frequency of the Erlang monotonic clock. Time correction ensures that Erlang monotonic time does not
warp and that the frequency isrelatively accurate. The type of frequency adjustments depends on the time warp mode
used. Section Time Warp Modes provides more details.

By default time correction is enabled if support for it exists on the specific platform. Support for it
includes both OS monotonic time, provided by the OS, and an implementation in the Erlang runtime
system using OS monotonic time. To check if your system has support for OS monotonic time, call
erl ang: system i nf o(os_nonot oni c_ti ne_source). To check if time correction is enabled on your
system, cal erl ang: system.info(tine_correction).

To enable or disable time correction, pass command-lineargument +c [true| fal se] toerl (1).

If time correction is disabled, Erlang monotonic time can warp forwards or stop, or even freeze for extended periods
of time. There are then no guarantees that the frequency of the Erlang monotonic clock is accurate or stable.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.3 Time and Time Correction in Erlang

You typically never want to disable time correction. Previously a performance penalty was associated with time
correction, but nowadays it is usually the other way around. If time correction is disabled, you probably get bad
scalability, bad performance, and bad time measurements.

1.3.5 Time Warp Safe Code

Time warp safe code can handle atime warp of Erlang systemtime.

er | ang: now 0 behavesbad when Erlang system timewarps. When Erlang system time does atimewarp backwards,
the values returned from er | ang: now 0 freeze (if you disregard the microsecond increments made because of the
actual call) until OS system time reaches the point of the last value returned by er | ang: now 0. This freeze can
continue for along time. It can take years, decades, and even longer until the freeze stops.

All usesof er | ang: now’ 0 are not necessarily time warp unsafe. If you do not useit to get time, it istime warp safe.
However, all usesof er | ang: now 0 aresuboptimal from a performance and scalability perspective. So you really
want to replace the use of it with other functionality. For examples of how to replace the use of er | ang: now 0,
see section How to Work with the New API.

1.3.6 Time Warp Modes

Current Erlang system time is determined by adding the current Erlang monotonic time with current time offset. The
time offset is managed differently depending on which time warp mode you use.

To set the time warp mode, pass command-line argument +C [no_ti me_war p| si ngl e_ti ne_war p|
multi _time_warp] toerl (1).

No Time Warp Mode

The time offset is determined at runtime system start and does not change later. Thisis the default behavior, but not
because it is the best mode (which it is not). It is default only because this is how the runtime system behaved until
ERTS 7.0. Ensure that your Erlang code that can execute during atime warp is time warp safe before enabling other
modes.

Asthetime offset is not allowed to change, time correction must adjust the frequency of the Erlang monotonic clock
to align Erlang system time with OS system time smoothly. A significant downside of this approach is that we on
purpose will use a faulty frequency on the Erlang monotonic clock if adjustments are needed. This error can be as
large as 1%. This error will show up in all time measurements in the runtime system.

If time correction is not enabled, Erlang monotonic time freezes when OS system time leaps backwards. The freeze of
monatonic time continues until OS system time catches up. The freeze can continue for along time. When OS system
time leaps forwards, Erlang monotonic time also leaps forward.

Single Time Warp Mode

Thismode is more or less a backward compatibility mode as from its introduction.

On an embedded system it is not uncommon that the system has no power supply, not even a battery, when it is shut
off. The system clock on such a system is typically way off when the system boots. If no time warp mode is used,
and the Erlang runtime system is started before OS system time has been corrected, Erlang system time can be wrong
for along time, centuries or even longer.

If you need to use Erlang code that is not time warp safe, and you need to start the Erlang runtime system before OS
system time has been corrected, you may want to use the single time warp mode.

There are limitations to when you can execute time warp unsafe code using this mode. If it is possible to use time
warp safe code only, it is much better to use the multi-time warp mode instead.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Using the single time warp mode, the time offset is handled in two phases:

Preliminary Phase
This phase starts when the runtime system starts. A preliminary time offset based on current OS system time is
determined. This offset isfrom now on to be fixed during the whole preliminary phase.

If time correction is enabled, adjustmentsto the Erlang monotonic clock are made to keep its frequency as correct
as possible. However, no adjustments are made trying to align Erlang system time and OS system time. That
is, during the preliminary phase Erlang system time and OS system time can diverge from each other, and no
attempt is made to prevent this.

If time correction is disabled, changes in OS system time affects the monotonic clock the same way as when the
no time warp mode is used.

Fina Phase

This phase begins when the user finalizes the time offset by caling
erl ang: system flag(time_offset, finalize).Thefinaization canonly be performed once.

During finalization, the time offset is adjusted and fixed so that current Erlang system time alignswith the current
OS system time. Asthe time offset can change during the finalization, Erlang system time can do atime warp at
this point. The time offset is from now on fixed until the runtime system terminates. If time correction has been
enabled, the time correction from now on also makes adjustments to align Erlang system time with OS system
time. When the system isin the final phase, it behaves exactly asin no time warp mode.

In order for this to work properly, the user must ensure that the foll owing two requirements are satisfied:
Forward Time Warp

The time warp made when finalizing the time offset can only be done forwards without encountering problems.
Thisimplies that the user must ensure that OS system time is set to atime earlier or equal to actual POSIX time
before starting the Erlang runtime system.

If you are not surethat OS system timeis correct, set it to atimethat is guaranteed to be earlier than actual POSIX
time before starting the Erlang runtime system, just to be safe.

Finalize Correct OS System Time
OS system time must be correct when the user finalizes the time offset.
If these requirements are not fulfilled, the system may behave very bad.

Assuming that these requirements are fulfilled, time correction is enabled, and OS system time is adjusted using a
time adjustment protocol such as NTP, only small adjustments of Erlang monotonic time are needed to keep system
times aligned after finalization. Aslong asthe system is not suspended, the largest adjustments needed are for inserted
(or deleted) leap seconds.

To use thismode, ensure that all Erlang code that will execute in both phases is time warp safe.
Code executing only in the final phase does not have to be able to cope with the time warp.

Multi-Time Warp Mode

Multi-time warp mode in combination with time correction is the preferred configuration. This as the Erlang
runtime system have better performance, scale better, and behave better on ailmost all platforms. Also, the accuracy
and precision of time measurements are better. Only Erlang runtime systems executing on ancient platforms benefit
from another configuration.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.3 Time and Time Correction in Erlang

The time offset can change at any time without limitations. That is, Erlang system time can perform time warps both
forwards and backwards at any time. Aswe align Erlang system time with OS system time by changing the time offset,
we can enable a time correction that tries to adjust the frequency of the Erlang monotonic clock to be as correct as
possible. This makes time measurements using Erlang monotonic time more accurate and precise.

If time correction is disabled, Erlang monotonic time leaps forward if OS system time leaps forward. If OS system
time leaps backwards, Erlang monotonic time stops briefly, but it does not freeze for extended periods of time. This
asthe time offset is changed to align Erlang system time with OS system time.

To use this mode, ensure that all Erlang code that will execute on the runtime system is time warp safe. ‘

1.3.7 New Time API

Theoldtime APl isbasedoner | ang: now 0.er | ang: how 0 wasintended to be used for many unrelated things.
Thistied these unrelated operations together and caused issues with performance, scalability, accuracy, and precision
for operations that did not need to have such issues. To improve this, the new API spreads different functionality over
multiple functions.

To be backward compatible, er | ang: now 0 remains "as is’, but you are strongly discouraged from using it.
Many use cases of er | ang: now/ 0 prevents you from using the new multi-time warp mode, which is an important
part of this new time functionality improvement.

Some of the new BIFson some systems, perhaps surprisingly, return negative integer values on anewly started runtime
system. Thisis not a bug, but a memory use optimization.

The new API consists of the following new BIFs:

e erlang:convert _time _unit/3
e erlang: monotonic_tine/0

e erlang:nonotonic_tine/l

e erlang:systemtine/0

e erlang:systemtine/l

e erlang:tine_offset/0

e erlang:tine_offset/1

e erlang:tinestanp/0

e erlang:unique_integer/0

* erlang:unique_integer/1

e oO0s:systemtine/0

e os:systemtine/l

The new API also consists of extensions of the following existing BIFs:

e erlang:nmonitor(tinme_offset, clock_service)

« erlang:systemflag(time_offset, finalize)

e erlang: system.info(os_nonotonic_tinme_source)
e erlang:systeminfo(os_systemtinme_source)

e erlang:systeminfo(tine_offset)

e erlang:systeminfo(time_warp_node)

* erlang:system.info(time_correction)

e erlang:system.info(start_tine)

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

e erlang:systeminfo(end_tine)
New Erlang Monotonic Time

Erlang monotonic time assuchisnew asfrom ERTS 7.0. It isintroduced to detach time measurements, such as elapsed
time from calendar time. In many use cases there is a need to measure elapsed time or specify a time relative to
another point in time without the need to know the involved timesin UTC or any other globally defined time scale.
By introducing a time scale with a local definition of where it starts, time that do not concern calendar time can be
managed on that time scale. Erlang monotonic time uses such atime scale with alocally defined start.

Theintroduction of Erlang monotonic time allows usto adjust the two Erlang times (Erlang monotonic time and Erlang
system time) separately. By doing this, the accuracy of elapsed time does not have to suffer just because the system
time happened to be wrong at some point in time. Separate adjustments of thetwo timesare only performed in thetime
warp modes, and only fully separated in the multi-time warp mode. All other modes than the multi-time warp mode
are for backward compatibility reasons. When using these modes, the accuracy of Erlang monotonic time suffer, as
the adjustments of Erlang monotonic time in these modes are more or less tied to Erlang system time.

The adjustment of system time could have been made smother than using a time warp approach, but we think that
would be abad choice. Aswe can express and measure time that is not connected to calendar time by the use of Erlang
monotonic time, it is better to expose the change in Erlang system time immediately. This as the Erlang applications
executing on the system can react on the change in system time as soon as possible. Thisis also more or less exactly
how most operating systems handl e this (OS monotonic time and OS system time). By adjusting system time smoothly,
we would just hide the fact that system time changed and make it harder for the Erlang applications to react to the
change in asensible way.

To be ableto react to achangein Erlang system time, you must be able to detect that it happened. The changein Erlang
system time occurs when the current time offset is changed. We have therefore introduced the possibility to monitor
thetime offset using er | ang: noni tor (ti me_of fset, cl ock_service).A process monitoring thetime
offset is sent a message on the following format when the time offset is changed:

{'CHANGE', MonitorReference, time offset, clock service, NewTimeOffset}

Unique Values

Besidesreportingtime, er | ang: now' 0 also produces unique and strictly monotonically increasing values. To detach
this functionality from time measurements, we have introduced er | ang: uni que_i nt eger ().

How to Work with the New API

Previoudly er | ang: now O was the only option for doing many things. This section deals with some things that
er |l ang: now 0 can be used for, and how you use the new API.

Retrieve Erlang System Time

Useer | ang: now O to retrieve the current Erlang system time.

Use erl ang: system ti ne/ 1 toretrieve the current Erlang system time on the time unit of your choice.

If you want the same format as returned by er | ang: now 0, use er | ang: ti mest anp/ 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.3 Time and Time Correction in Erlang

Measure Elapsed Time

Don't:

Taketime stampswith er | ang: now/ 0 and calculate the differencein timewith ti ner: now_di ff/ 2.

Take time stamps with er| ang: nonot oni c_ti ne/ 0 and calculate the time difference using ordinary
subtraction. Theresultisin nat i ve time unit. If you want to convert the result to another time unit, you can use
erl ang: convert _tine_unit/3.

An easier way todo thisistouse er | ang: nonot oni ¢_t i ne/ 1 with the desired time unit. However, you can
then lose accuracy and precision.

Determine Order of Events

Don't:

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

Determinethe order of eventsby saving theinteger returnedby er | ang: uni que_i nt eger ([nonot oni c])
when the event occurs. These integers are strictly monotonically ordered on current runtime system instance
corresponding to creation time.

Determine Order of Events with Time of the Event

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Determine the order of events by saving atuple containing monotonic time and a strictly monotonically increasing
integer asfollows:

Time = erlang:monotonic_time(),
UMI = erlang:unique integer([monotonic]),
EventTag = {Time, UMI}

These tuples are strictly monotonically ordered on the current runtime system instance according to creation time.
It isimportant that the monotonic time isin the first element (the most significant element when comparing two-
tuples). Using the monotonic time in the tuples, you can cal cul ate time between events.

If you are interested in Erlang system time at the time when the event occurred, you can also save the time offset
before or after saving theeventsusing er | ang: ti me_of f set / 0. Erlang monotonic time added with the time
offset corresponds to Erlang system time.

If you are executing in a mode where time offset can change, and you want to get the actual Erlang system time
when the event occurred, you can save the time offset as a third element in the tuple (the least significant element
when comparing three-tuples).

Create a Unique Name

Don't:

Use the values returned from er | ang: now/ 0 to create a name unique on the current runtime system instance.

Use the value returned from er | ang: uni que_i nt eger/ 0 to create a name unique on the current runtime
systeminstance. If you only want positiveintegers, you canuse er | ang: uni que_i nt eger ([posi tive]).

Seed Random Number Generation with a Unique Value

| Seed random number generation using er | ang: now() .

Don't:

Seed random number generation using a combination of er| ang: nonot oni c_ti nme(),
erlang:ti me_offset(), erl ang: uni que_i nt eger (), and other functionality.

To sum up this section: Do not useer | ang: now 0.

1.3.8 Support of Both New and Old OTP Releases

It can berequired that your code must run on avariety of OTP installations of different OTP releases. If so, you cannot
use the new API out of the box, asit will not be available on releases before OTP 18. The solution isnot to avoid using
the new API, asyour code would then not benefit from the scalability and accuracy improvements made. Instead, use
the new APl when available, and fall back on er | ang: now' 0 when the new API is unavailable.

Fortunately most of the new API can easily be implemented using existing primitives, except for:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

1.4 Match Specifications in Erlang

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

« erlang: system.info(os_nonotonic_time_source)

e erlang:systeminfo(os_systemtine_source))

By wrapping the APl with functions that fall back on er| ang: now 0 when the new API is unavailable, and

using these wrappers instead of using the API directly, the problem is solved. These wrappers can, for example, be
implemented asin $ERL_TOP/ertsexample/time _compat.erl.

1.4 Match Specifications in Erlang

A "match specification” (mat ch_spec) isan Erlang term describing asmall "program” that triesto match something.
It can be used to either control tracing with erlang:trace pattern/3 or to search for objectsin an ETS table with for
example ets: select/2. The match specification in many ways works like a small function in Erlang, but isinterpreted/
compiled by the Erlang runtime system to something much more efficient than calling an Erlang function. The match
specification is also very limited compared to the expressiveness of real Erlang functions.

The most notable difference between a match specification and an Erlang fun is the syntax. Match specifications are
Erlang terms, not Erlang code. Also, a match specification has a strange concept of exceptions:

* An exception (such as badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, generates
immediate failure.

e Anexception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.4.1 Grammar

A match specification used in tracing can be described in the following informal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' ' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable |' '

» MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

* MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }

e BoolFunction::=i s_atom|is_float |is_integer |is_list|is_nunmber |is_pid]|is_port |
is referencelis_tuple|is_map|is_binary|is_function]|is_record]|is_seq_trace|

"and' |'or' |'not' |'xor' |'andal so' |' orel se'
e ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

* TermConstruct = {{}} [{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] |#{} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

e NonCompositeTerm ::=term() (not list or tuple or map)

e Constant ::={const , term()}

e GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |node |round |si ze|t] |[trunc|' +
["-"|"*" |"div' |"rem |'band' |'bor' |'bxor' |"bnot' |"bsl"' |"bsr' |'>" |'">=" |'<" |
=< == == == T = | sel fo|get _tew

e MatchBody ::=[ActionTerm]

* ActionTerm ::= ConditionExpression | ActionCall

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href

1.4 Match Specifications in Erlang

ActionCall ::= { ActionFunction} | { ActionFunction, ActionTerm, ...}

ActionFunction ::=set _seq_t oken |get _seq_t oken |nessage |return_trace |
exception_trace|process_dunp|enabl e trace|di sable trace|trace |display |
caller |set _tcw]|silent

A match specification used in et s(3) can be described in the following infor mal grammar:

MatchExpression ::= [MatchFunction, ...]

MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

MatchHead ::= MatchVariable|' _' |{ MatchHeadPart, ... }

MatchHeadPart ::= term() | MatchVariable|' '

MatchVariable ::= '$<number>'

MatchConditions ::= [MatchCondition, ...] | []

MatchCondition ::= { GuardFunction} |{ GuardFunction, ConditionExpression, ... }
BoolFunction::=is_atom|is_float |is_integer |is_list |is_nunber |is_pid]is_port |
is referencelis_tuple|is_map|is_binary|is_function]|is_record]|is_seq_trace|
"and' |'or' |'not' |'xor' |'andal so' |' orel se'

ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ...}} |[] |[ConditionExpression, ...] | #{} | #{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::= term() (not list or tuple or map)

Constant ::= {const , term()}

GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |[node |round |si ze |t] [trunc|' +
["-"|"*" ["div' |'"rem |"band" |'bor' |["bxor' |'bnot' |'"bsl' |"bsr' |'>" |[">=" |'<" |
=< == == == T = | sel f |get _tew

MatchBody ::=[ConditionExpression, ...]

1.4.2 Function Descriptions

Functions Allowed in All Types of Match Specifications

The functionsalowed in mat ch_spec work asfollows:

is atomis float,is integer,is |list,is nunber,is pid,is_port,is_reference,
is tuple,is map,is_binary,is function

Same as the corresponding guard testsin Erlang, returnt r ue or f al se.

is record

not

Takes an additional parameter, which must betheresult of r ecor d_i nf o(si ze, <record_type>),like
in{is_record, '$1', rectype, record_info(size, rectype)}.

Negates its single argument (anything other than f al se givesf al se).

and'

Returnst r ue if all itsarguments (variable length argument list) evaluatetot r ue, otherwisef al se. Evaluation
order is undefined.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.4 Match Specifications in Erlang

or

Returns t r ue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is

undefined.
andal so'

Worksas' and' , but quits evaluating its arguments when one argument eval uates to something elsethant r ue.
Arguments are evaluated |eft to right.

orel se'

Worksas' or' , but quitsevaluating as soon asone of itsargumentsevaluatestot r ue. Arguments are evaluated
left to right.

Xor

Only two arguments, of which onemust bet r ue and theother f al se toreturnt r ue; otherwise' xor' returns
false.

abs, el enent, hd, | engt h, node, round, si ze,tl ,trunc," + ,"-","*" "div',"rem,' band',

"bor',"bxor',"bnot', bsl',"bsr','>" "'>=" "< =< == == == 0= sel f
Same asthe corresponding Erlang BIFs (or operators). |n case of bad arguments, the result depends on the context.
In the Mat chCondi t i ons part of the expression, the test fails immediately (like in an Erlang guard). In the
Vat chBody part, exceptions are implicitly caught and the call resultsintheatom ' EXI T' .

Functions Allowed Only for Tracing

The functions allowed only for tracing work as follows:

i s_seq_trace
Returnst r ue if asequential trace token is set for the current process, otherwisef al se.

set _seq_t oken

Worksasseq_trace: set _token/ 2, butreturnst r ue onsuccess, and' EXI T' on error or bad argument.
Only allowed in the Mat chBody part and only allowed when tracing.

get _seq_t oken
Sameasseq_trace: get _t oken/ 0 and only allowed in the Mat chBody part when tracing.
nessage

Sets an additional message appended to the trace message sent. One can only set one additional message in the
body. Later calls replace the appended message.

As a specia case, { message, fal se} disables sending of trace messages (‘call' and 'return_to'") for this
function call, just like if the match specification had not matched. This can be useful if only the side effects of
the Mat chBody part are desired.

Another special caseis{ nessage, true}, which setsthe default behavior, asif the function had no match
specification; trace message is sent with no extra information (if no other calls to message are placed before
{message, true},itisinfacta"noop").

Takes one argument: the message. Returnst r ue and can only beused inthe Mat chBody part and when tracing.
return_trace

Causesar et ur n_f r omtrace message to be sent upon return from the current function. Takes no arguments,
returnst r ue and can only be used in the Mat chBody part when tracing. If the process trace flag si | ent is
active, ther et ur n_f r omtrace messageis inhibited.

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

Warning: If the traced function istail-recursive, this match specification function destroys that property. Hence,
if a match specification executing this function is used on a perpetual server process, it can only be active for
alimited period of time, or the emulator will eventually use all memory in the host machine and crash. If this
match specification function isinhibited using process trace flag si | ent , tail-recursiveness still remains.

exception_trace

Worksasr et urn_t race plus; if the traced function exits because of an exception, an excepti on_from
trace message is generated, regardless of the exception is caught or not.

process_dunp

Returns some textual information about the current process as a binary. Takes no arguments and is only allowed
in the Mat chBody part when tracing.

enabl e_trace

With one parameter this function turns on tracing like the Erlang call er |l ang: trace(sel f (), true,
[P2]) , where P2 isthe parameter to enabl e_t r ace.

With two parameters, the first parameter is to be either a process identifier or the registered name of a
process. In this case tracing is turned on for the designated process in the same way as in the Erlang call
erlang:trace(Pl, true, [P2]),wherePl isthefirstand P2 isthe second argument. The process P1
gets its trace messages sent to the same tracer as the process executing the statement uses. P1 cannot be one
of theatomsal | , newor exi st i ng (unlessthey are registered names). P2 cannot becpu_t i mest anp or
tracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.
di sabl e_trace

With one parameter this function disables tracing like the Erlang call er | ang: trace(sel f (), fal se,
[P2]) , where P2 isthe parameter to di sabl e_t race.

With two parameters this function works as the Erlang call er| ang: trace(P1, false, [P2]),where
P1 can be either a process identifier or a registered name and is specified as the first argument to the match
specification function. P2 cannot becpu_ti nestanp ortracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.

trace

With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively al changes are
applied atomically. The trace flags are the sasme asfor er | ang: t r ace/ 3, not including cpu_t i mest anp,
but includingt r acer .

If atracer is specified in both lists, the tracer in the enable list takes precedence. If no tracer is specified, the same
tracer as the process executing the match specification is used.

When using a tracer module, the module must be loaded before the match specification is executed. If it is not
loaded, the match fails.

With three parameters to this function, the first is either a process identifier or the registered name of a process
to set trace flags on, the second is the disable list, and the third is the enable list.

Returnst r ue if any trace property was changed for the trace target process, otherwisef al se. Can only be used
in the Mat chBody part when tracing.

call er

Returns the calling function as a tuple { Modul e, Function, Arity} orthe atom undefi ned if the
calling function cannot be determined. Can only be used in the Mat chBody part when tracing.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.4 Match Specifications in Erlang

Notice that if a "technically built in function” (that is, a function not written in Erlang) is traced, the cal | er
function sometimesreturnsthe atom undef i ned. The calling Erlang function is not available during such calls.

di spl ay

For debugging purposes only. Displaysthe single argument as an Erlang term on st dout , which is seldom what
iswanted. Returnst r ue and can only be used in the Mat chBody part when tracing.

get _tcw

Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace control _word).

Thetrace control word is a 32-bit unsigned integer intended for generic trace control. The trace control word can
betested and set both from within trace match specificationsand with BIFs. Thiscall isonly allowed whentracing.

set_tcw

Takes one unsigned integer argument, setsthe value of the node's trace control word to the value of the argument,
and returns the previous value. The same is done by er | ang: system fl ag(trace_control _word,
Val ue) . Itisonly alowed to useset _t cwin the Mat chBody part when tracing.

sil ent

Takes one argument. If theargument ist r ue, the call trace message mode for the current processis set to silent
for this call and al later calls, that is, call trace messages are inhibited even if { message, true} iscaled
in the Mat chBody part for atraced function.

This mode can aso be activated with flag si | ent toer| ang: trace/ 3.

If the argument isf al se, the call trace message mode for the current process is set to normal (non-silent) for
thiscall and all later calls.

If theargumentisnott r ue or f al se, the call trace message mode is unaffected.

All "function calls* must be tuples, even if they take no arguments. The value of sel f isthe atom() sel f, but
thevalueof { sel f} isthe pid() of the current process.

1.4.3 Match target

Each execution of amatch specification is done against a match target term. The format and content of the target term
depends on the context in which the match is done. The match target for ETS is dways afull table tuple. The match
target for call trace is always alist of al function arguments. The match target for event trace depends on the event
type, see table below.

Context Type Match target Description
ETS {Key, Vauel, Vaue?, ...} | A tableobject
Trace call [Argl, Arg2, ...] Function arguments

Receiving process/port and

Trace send [Receiver, Message] m e term

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

Sending node, process/port

Trace 'receive
and message term

[Node, Sender, Message]

Table 4.1: Match target depending on context

1.4.4 Variables and Literals

Variables take the form ' $<nunber >' , where <numrber > is an integer between 0 and 100,000,000 (1e+8). The
behavior if the number isoutside theselimitsisundefined. Inthe Mat chHead part, the special variable' _' matches
anything, and never gets bound (like _ in Erlang).

e IntheMat chCondi t i on/ Mat chBody parts, no unbound variablesarealowed, so' ' isinterpreted asitself
(an atom). Variables can only be bound in the Mat chHead part.

e Inthe Mat chBody and Mat chCondi t i on parts, only variables bound previously can be used.

* Asagpecial case, the following apply in the Mat chCondi t i on/ Mat chBody parts:

+ Thevariable' $_' expands to the whole match target term.
* The variable ' $$' expands to a list of the vaues of al bound variables in order (that is,
["$1',"$2', ...]).
Inthe Mat chHead part, al literals (except the variables above) are interpreted "asis".
In the Mat chCondi t i on/ Mat chBody parts, the interpretation is in some ways different. Literals in these parts

can either be written "asis", which works for all literals except tuples, or by using the special form { const, T},
where T isany Erlang term.

For tuple literas in the match specification, double tuple parentheses can also be used, that is, construct them as a
tuple of arity one containing asingle tuple, which is the one to be constructed. The "double tuple parenthesis’ syntax
is useful to construct tuples from already bound variables, likein{{' $1', [a, b, ' $2']}}. Examples:

Expression Variable Bindings Result

{{'s1','$2}} '$1'=a,'$2=b {ab}

{const, {'$1', '$2'}} Irrelevant {'$1, '$2}

a Irrelevant a

3T S =] [l

[$1] S =] (1]

[{{a}}] Irrelevant [{a}]

42 Irrelevant 42

"hello" Irrelevant "hello"

$1 Irrelevant 49 (the ASCII value for character '1")

Table 4.2: Literals in MatchCondition/MatchBody Parts of a Match Specification

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.4 Match Specifications in Erlang

1.4.5 Execution of the Match

The execution of the match expression, when the runtime system decides whether a trace message is to be sent, is
asfollows:
For each tuplein the Mat chExpr essi on list and while no match has succeeded:

* Match the Mat chHead part against the match target term, binding the ' $<nunber >' variables (much likein
et s: mat ch/ 2). If the Mat chHead part cannot match the arguments, the match fails.

» Evauateeach Mat chCondi ti on (whereonly ' $<nunber >' variablespreviously bound inthe Mat chHead
part can occur) and expect it to return the atom t r ue. When a condition does not evaluate to t r ue, the match
fails. If any BIF call generates an exception, the match also fails.

+ Two cases can occur:
« |If the match specification is executing when tracing:

Evaluate each Act i onTer min the same way as the Mat chCondi t i ons, but ignore the return values.
Regardless of what happens in this part, the match has succeeded.

« |If the match specification is executed when selecting objects from an ETS table:
Evaluate the expressions in order and return the value of the last expression (typicaly there is only one

expression in this context).
1.4.6 Differences between Match Specifications in ETS and Tracing

ETS match specifications produce a return value. Usudly the W©MatchBody contains one single
Condi ti onExpr essi on that defines the return value without any side effects. Calls with side effects are not
allowed in the ETS context.

When tracing there is no return value to produce, the match specification either matches or does not. The effect when
the expression matches is a trace message rather than a returned term. The Act i onTer s are executed as in an
imperative language, that is, for their side effects. Functions with side effects are also allowed when tracing.

1.4.7 Tracing Examples

Match an argument list of three, where the first and third arguments are equal:

({C'$1", '_", '$1'],
]I
131

Match an argument list of three, where the second argument is a number > 3:

—r——

({r_", 's1+, ' 'l,
[({ '=', '"$1', 3},
[1}]
Match an argument list of three, where the third argument is either a tuple containing argument one and two, or alist

beginning with argument one and two (that is,[a, b, [a, b, c]] or[a, b, {a, b}]):

[{['$1", "$2", '$3'],

[{'orelse',
{'=:=", "$3", {{'$1','$2"}}},
{'and'
{'=:=", '$1', {hd, '$3'}},
. {'=:=", '$2", {hd, {tl, "$3'}}}}}1,

The above problem can a so be solved as follows:

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

({r'$1', "$2', {'$1', '$2}1, [1, [1},
{0'$1*, "$2', ['$1', "$2' | '_'11, [1, [I}]

Match two arguments, where the first is a tuple beginning with a list that in turn begins with the second argument
timestwo (thatis, [{[4, x],y},2] or[{[8], V¥, z},4]):

({r's1+, "$2'1,[{'=:=", {"*', 2, '$2'}, {hd, {element, 1, '$1'}}}1,
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message,
otherwise let the trace message be "asis", but set the sequential trace token label to 4711:

[{['$1", "$1', '$1'],
[{is_number, '$1'}],
[{message, {process dump}}1},
{' ', [1, [{set seq token, label, 4711}1}]

Ascan be noted above, the parameter list can be matched against asingleMat chVari abl eoran' _' . Toreplacethe
whole parameter list with asingle variableis a special case. In all other cases the Mat chHead must be aproper list.

Generate a trace message only if the trace control word is set to 1:

[{I_I ’
[{'==",{get_tcw}, {const, 1}}],
[1}]

Generate atrace message only if thereisaseq_t r ace token:

{_"
[{'==',{is _seq trace},{const, 1}}1,
[1}1

Removethe' si | ent' traceflag when thefirst argumentis' ver bose' , and add it whenitis' sil ent' :

[{'$1",
[{'==",{hd, '$1'},verbose}],
[{trace, [silent],[1}1},
{'$1',
[{'==',{hd, '$1'},silent}],

[{trace, [],[silent]}]1}]

Addar et urn_trace messageif the function is of arity 3:

[{'s1",
[{'==",{length, "'$1'},3}],
[{return_trace}l},

{'_" 01, [1}]

Generate a trace message only if the function is of arity 3 and thefirst argumentis' t r ace' :
[{['trace','$2"','$3"'],
[1,
(1},
{'_" 11,11}

1.4.8 ETS Examples

Match al objectsin an ETS table, where the first elementistheatom ' st ri der' and the tuple arity is 3, and return
the whole object:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.5 How to Interpret the Erlang Crash Dumps

[{{strider,"' ',' '},
[1,
['$ '1}]
Match all objectsin an ETS table with arity > 1 and the first element is'gandalf’, and return element 2:

[{'$1',
[{'==", gandalf, {element, 1, '$1'}},{'>=",{size, '$1'},2}1,
[{element,2,'$1'}1}]

In this example, if the first element had been the key, it is much more efficient to match that key in the Mat chHead
partthanintheMat chCondi t i ons part. The search space of thetablesisrestricted with regardsto the Mat chHead
so that only objects with the matching key are searched.

Match tuples of three elements, where the second element is either ' nerry' or' pi ppi n', and return the whole
objects:

({{'_" merry,'_'},
[1,

['$ '13,
{E]'_' ,pippin,' '},
['$ '1}]

Functionet s: t est _ns/ 2> can be useful for testing complicated ETS matches.

1.5 How to Interpret the Erlang Crash Dumps

This section describestheer | _cr ash. dunp file generated upon abnormal exit of the Erlang runtime system.

The Erlang crash dump had a mgjor facelift in Erlang/OTP R9C. The information in this section is therefore not
directly applicable for older dumps. However, if you use cr ashdunp_vi ewer (3) on older dumps, the crash
dumps are tranglated into a format similar to this.

The system writes the crash dump in the current directory of the emulator or in the file pointed out by the environment
variable (whatever that means on the current operating system) ERL_ CRASH_DUMP. For a crash dump to be written,
awritable file system must be mounted.

Crash dumps are written mainly for one of two reasons. either the built-in function er | ang: hal t/ 1 is called
explicitly with a string argument from running Erlang code, or the runtime system has detected an error that cannot
be handled. The most usual reason that the system cannot handle the error is that the cause is external limitations,
such as running out of memory. A crash dump caused by an internal error can be caused by the system reaching limits
in the emulator itself (like the number of atoms in the system, or too many simultaneous ETS tables). Usually the
emulator or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump
correctly isimportant.

On systemsthat support OSsignals, it isalso possibleto stop the runtime system and generate a crash dump by sending
the SI GUSR1 signal.

The Erlang crash dump is areadable text file, but it can be difficult to read. Using the Crashdump Viewer tool in the
Ooser ver application simplifies the task. Thisis awx-widget-based tool for browsing Erlang crash dumps.

1.5.1 General Information
Thefirst part of the crash dump shows the following:

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

e The creation time for the dump

e A dogan indicating the reason for the dump

e The system version of the node from which the dump originates
e The compile time of the emulator running the originating node
e The number of atomsin the atom table

e Theruntime system thread that caused the crash dump

Reasons for Crash Dumps (Slogan)

The reason for the dump is shown in the beginning of the file as:

Slogan: <reason>

If the system ishalted by the BIF er | ang: hal t/ 1, the slogan is the string parameter passed to the BIF, otherwise
it isadescription generated by the emulator or the (Erlang) kernel. Normally the message is enough to understand the
problem, but some messages are described here. Notice that the suggested reasons for the crash are only suggestions.
The exact reasons for the errors can vary depending on the local applications and the underlying operating system.

<A>: Cannot allocate <N> bytes of memory (of type" <T>")

The system has run out of memory. <A> is the alocator that failed to allocate memory, <N> is the number of
bytes that <A> tried to allocate, and <T> is the memory block type that the memory was needed for. The most
common case is that a process stores huge amounts of data. In this case <T> is most often heap, ol d_heap,
heap_frag, or bi nary. For moreinformation on allocators, seeerts_al | oc(3).

<A>: Cannot reallocate <N> bytes of memory (of type" <T>")

Same as above except that memory was reallocated instead of allocated when the system ran out of memory.
Unexpected op code <N>

Error in compiled code, beamfile damaged, or error in the compiler.

Module <Name> undefined | Function <Name> undefined | No function <Name>:<Name>/1| No function
<Name>:start/2

The Kernel/STDLIB applications are damaged or the start script is damaged.
Driver_select called with too largefile descriptor N

The number of file descriptors for sockets exceeds 1024 (Unix only). The limit on file descriptors in some Unix
flavors can be set to over 1024, but only 1024 sockets/pipes can be used simultaneously by Erlang (because of
limitationsin the Unix sel ect call). The number of open regular filesis not affected by this.

Received SIGUSR1

Sending the SI GUSR1 signal to an Erlang machine (Unix only) forces a crash dump. This slogan reflects that
the Erlang machine crash-dumped because of receiving that signal.

Kernel pid terminated (<Who>) (<Exit reason>)

The kernel supervisor has detected a failure, usually that the appl i cati on_control | er has shut down
(Who=application_controller,Wy=shut down). Theapplication controller can have shut down for
many reasons, the most usual is that the node name of the distributed Erlang node is already in use. A complete
supervisor tree "crash” (that is, the top supervisors have exited) gives about the same result. This message comes
from the Erlang code and not from the virtual machineitself. It isaways because of somefailurein an application,
either within OTP or a"user-written" one. Looking at the error log for your application is probably the first step
to take.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.5 How to Interpret the Erlang Crash Dumps

I nit terminating in do_boot ()

The primitive Erlang boot sequence was terminated, most probably because the boot script has errors or cannot
be read. Thisis usualy a configuration error; the system can have been started with a faulty - boot parameter
or with aboot script from the wrong OTP version.

Could not start kernel pid (<Who>) ()

One of the kernel processes could not start. This is probably because of faulty arguments (like errorsin a -
conf i g argument) or faulty configuration files. Check that all files are in their correct location and that the
configuration files (if any) are not damaged. Usually messages are also written to the controlling terminal and/
or the error log explaining what iswrong.

Other errors than these can occur, as the er | ang: hal t/ 1 BIF can generate any message. If the message is not
generated by the BIF and does not occur in the list above, it can be because of an error in the emulator. There can
however be unusual messages, not mentioned here, which are still connected to an application failure. There is much
more information available, so athorough reading of the crash dump can reveal the crash reason. The size of processes,
the number of ETS tables, and the Erlang data on each process stack can be useful to find the problem.

Number of Atoms

The number of atoms in the system at the time of the crash is shown as Atoms: <number>. Some ten thousands
atomsis perfectly normal, but more canindicatethat theBlIF er | ang: | i st _t o_at om 1 isused to generate many
different atoms dynamically, which is never a good idea.

1.5.2 Scheduler Information

Under the tag =scheduler is shown information about the current state and statistics of the schedulersin the runtime
system. On operating systems that allow suspension of other threads, the data within this section reflects what the
runtime system looks like when a crash occurs.

The following fields can exist for a process:
=scheduler:id

Heading. States the scheduler identifier.
Scheduler Sleep Info Flags

If empty, the scheduler was doing some work. If not empty, the scheduler is either in some state of sleep, or
suspended. This entry isonly present in an SMP-enabled emulator.

Scheduler Sleep Info Aux Work

If not empty, ascheduler internal auxiliary work is scheduled to be done.
Current Port

The port identifier of the port that is currently executed by the scheduler.
Current Process

The process identifier of the process that is currently executed by the scheduler. If there is such a process, this
entry isfollowed by the State, I nternal State, Program Counter, and CP of that same process. The entries are
described in section Process | nformation.

Notice that this is a snapshot of what the entries are exactly when the crash dump is starting to be generated.
Therefore they are most likely different (and more telling) than the entries for the same processes found in the
=proc section. If thereis no currently running process, only the Current Process entry is shown.

Current Process Limited Stack Trace

Thisentry is shown only if thereis a current process. It is similar to =proc_stack, except that only the function
frames are shown (that is, the stack variables are omitted). Also, only the top and bottom part of the stack are

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

shown. If the stack is small (< 512 dlots), the entire stack is shown. Otherwise the entry skipping ## slotsis
shown, where ## is replaced by the number of dlots that has been skipped.

Run Queue
Shows statistics about how many processes and ports of different priorities are scheduled on this scheduler.
** crashed **

This entry is normally not shown. It signifies that getting the rest of the information about this scheduler failed
for some reason.

1.5.3 Memory Information

Under the tag =memory is shown information similar to what can be obtainted on a living node with
erl ang: menmory().

1.5.4 Internal Table Information

Under the tags =hash_table:<table nhame> and =index_table:<table name> is shown internal tables. These are
mostly of interest for runtime system developers.

1.5.5 Allocated Areas

Under the tag =allocated_areas is shown information similar to what can be obtained on a living node with
erl ang: system.info(allocated _areas).

1.5.6 Allocator

Under the tag =allocator :<A> is shown various information about allocator <A>. The information is similar to what
can be obtained on aliving node with er| ang: system i nfo({al | ocator, <A>}).For moreinformation,
seeasoerts_all oc(3).

1.5.7 Process Information

The Erlang crashdump contains a listing of each living Erlang process in the system. The following fields can exist
for aprocess:

=proc:<pid>
Heading. States the processidentifier.
State
The state of the process. This can be one of the following:

Scheduled
The process was scheduled to run but is currently not running ("in the run queue”).
Waiting
The process was waiting for something (inr ecei ve).
Running
The process was currently running. If the BIF er | ang: hal t / 1 was called, this was the process calling
it.
Exiting
The process was on its way to exit.
Garbing
Thisis bad luck, the process was garbage collecting when the crash dump was written. The rest of the
information for this processis limited.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.5 How to Interpret the Erlang Crash Dumps

Suspended
The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or becauseit triesto write
to abusy port.

Registered name
The registered name of the process, if any.
Spawned as

The entry point of the process, that is, what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call

The current function of the process. These fields do not always exist.
Spawned by

The parent of the process, that is, the process that executed spawn or spawn_| i nk.
Started

The date and time when the process was started.
M essage queue length

The number of messages in the process message queue.
Number of heap fragments

The number of allocated heap fragments.
Heap fragment data

Size of fragmented heap data. Thisis data either created by messages sent to the process or by the Erlang BIFs.
This amount depends on so many things that this field is utterly uninteresting.

Link list
Process | Ds of processes linked to this one. Can also contain ports. If process monitoring is used, thisfield also
tellsinwhich direction the monitoring isin effect. That is, alink "to" aprocesstellsyou that the "current” process

was monitoring the other, and alink "from" a process tells you that the other process was monitoring the current
one.

Reductions

The number of reductions consumed by the process.
Stack+heap

The size of the stack and heap (they share memory segment).
OldHeap

Thesize of the"old heap". The Erlang virtual machine uses generational garbage collection with two generations.
There is one heap for new data items and one for the data that has survived two garbage collections. The
assumption (which is amost always correct) is that data surviving two garbage collections can be "tenured" to
a heap more seldom garbage collected, as they will live for along period. This is a usual technique in virtual
machines. The sum of the heaps and stack together constitute most of the allocated memory of the process.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Memory

The total memory used by this process. This includes call stack, heap, and interna structures. Same as
erl ang: process_i nfo(Pi d, menory).

Program counter

The current instruction pointer. Thisis only of interest for runtime system developers. The function into which
the program counter points is the current function of the process.

CP

The continuation pointer, that is, the return address for the current call. Usually useless for other than runtime
system developers. This can be followed by the function into which the CP points, which is the function calling
the current function.

Arity

The number of live argument registers. The argument registers if any are live will follow. These can contain the
arguments of the function if they are not yet moved to the stack.

Internal State
A more detailed internal representation of the state of this process.
See also section Process Data.

1.5.8 Port Information

This section lists the open ports, their owners, any linked processes, and the name of their driver or external process.

1.5.9 ETS Tables

This section contains information about all the ETS tablesin the system. The following fields are of interest for each
table:

=ets.<owner>
Heading. States the table owner (a process identifier).
Table
Theidentifier for the table. If thetableisananmed_t abl e, thisisthe name.
Name
The table name, regardless of if itisanamed_t abl e or not.
Hash table, Buckets
If thetableisahashtable, that is, if itisnot an or der ed_set .
Hash table, Chain Length

If thetableisahash table. Contains statistics about the table, such as the maximum, minimum, and average chain
length. Having amaximum much larger than the average, and a standard deviation much larger than the expected
standard deviation is a sign that the hashing of the terms behaves badly for some reason.

Ordered set (AVL tree), Elements
If thetableisan or der ed_set . (The number of elementsis the same as the number of objects in the table.)
Fixed

If thetableisfixed using et s: saf e_fi xt abl e/ 2 or some internal mechanism.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.5 How to Interpret the Erlang Crash Dumps

Objects
The number of objectsin thetable.
Words
The number of words (usually 4 bytes/word) allocated to datain the table.
Type
Thetabletype, that is, set , bag, dubl i cat e_bag, or or der ed_set .
Compr essed
If the table was compressed.
Protection
The protection of the table.
Write Concurrency
Ifwrite_concurrency wasenabled for the table.
Read Concurrency

If read_concurrency was enabled for the table.

1.5.10 Timers

This section contains information about al the timers started with the BIFs erl ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exist for each timer:

=timer:<owner >

Heading. States the timer owner (a processidentifier), that is, the process to receive the message when the timer
expires.

M essage
The message to be sent.
Time left

Number of milliseconds left until the message would have been sent.

1.5.11 Distribution Information

If the Erlang node was alive, that is, set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>

The node name.
no_distribution

If the node was not distributed.
=visible node:<channel>

Heading for avisible node, that is, an alive node with a connection to the node that crashed. States the channel
number for the node.

=hidden_node:<channel>

Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the " -
hi dden" flag. States the channel nhumber for the node.

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

=not_connected:<channel>

Heading for anode that was connected to the crashed node earlier. References (that is, process or port identifiers)
to the not connected node existed at the time of the crash. States the channel number for the node.

Name

The name of the remote node.
Controller

The port controlling communication with the remote node.
Creation

An integer (1-3) that together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote_proc>

Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote proc>

The remote process was monitoring the local process at the time of the crash.
Remotelink: <local_proc> <remote_proc>

A link existed between the local process and the remote process at the time of the crash.

1.5.12 Loaded Module Information

This section contains information about all |oaded modules.
First, the memory use by the loaded code is summarized:
Current code
Code that is the current latest version of the modules.
Old code
Code where there exists a newer version in the system, but the old version is not yet purged.
The memory useisin bytes.
Then, all loaded modules are listed. The following fields exist:
=mod:<module_name>
Heading. States the module name.
Current size
Memory use for the loaded code, in bytes.
Old size
Memory use for the old code, if any.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info

Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.5 How to Interpret the Erlang Crash Dumps

Old compilation info

Compilation information (options) for the old code, if any. Thisfield isdecoded when looked at by the Crashdump
Viewer tool.

1.5.13 Fun Information

This section lists all funs. The following fields exist for each fun:

=fun

Heading.

Module

The name of the module where the fun was defined.

Uniq, Index

Identifiers.

Address
The address of the fun's code.

Native address
The address of the fun's code when HiPE is enabled.

Refc

The number of referencesto the fun.

1.5.14 Process Data

For each processthereisat least one=proc_stack and one =proc_heap tag, followed by the raw memory information
for the stack and heap of the process.

For each process there is aso a =proc_messages tag if the process message queue is non-empty, and a
=proc_dictionary tag if the process dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou can then see the stack dump, the
message queue (if any), and the dictionary (if any).

The stack dump is a dump of the Erlang process stack. Most of the live data (that is, variables currently in use) are
placed on the stack; thus this can be interesting. One has to "guess' what is what, but as the information is symbolic,
thorough reading of thisinformation can be useful. Asan example, we can find the state variabl e of the Erlang primitive
loader online (5) and (6) in the following example:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

3cac44
y(0)

Return addr 0x13BF58 (<terminate process normally>)

["/view/siri r10 dev/clearcase/otp/erts/lib/kernel/ebin",

"/view/siri rl0 dev/clearcase/otp/erts/lib/stdlib/ebin"]
<0.1.0>
{state, [],none,#Fun<erl prim loader.6.7085890>,undefined,#Fun<erl prim_ loader.7.9000327>,
#Fun<erl prim loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl prim loader.9.10708760>}
infinity

When interpreting the data for a process, it is helpful to know that anonymous function objects (funs) are given the
following:

* A name constructed from the name of the function in which they are created
* A number (starting with 0) indicating the number of that fun within that function

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1.5.15 Atoms

This section presents al the atoms in the system. Thisis only of interest if one suspects that dynamic generation of
atoms can be a problem, otherwise this section can be ignored.

Notice that the last created atom is shown first.

1.5.16 Disclaimer

The format of the crash dump evolves between OTP rel eases. Some information described here may not apply to your
version. A description like thiswill never be complete; it is meant as an explanation of the crash dump in general and
as ahelp when trying to find application errors, not as a complete specification.

1.6 How to Implement an Alternative Carrier for the Erlang
Distribution

This section describes how to implement an alternative carrier protocol for the Erlang distribution. The distribution is
normally carried by TCP/IP. Here is explained a method for replacing TCP/IP with another protocol.

The sectionisastep-by-step explanation of theuds_di st exampleapplication (inthe Kernel applicationexanpl es
directory). Theuds_di st application implements distribution over Unix domain sockets and is written for the Sun
Solaris 2 operating environment. The mechanisms are however general and apply to any operating system Erlang runs
on. The reason the C code is not made portable, is simply readability.

This section was written along time ago. Most of it is till valid, but some things have changed since then. Most
notably is the driver interface. Some updates have been made to the documentation of the driver presented here,
but more can be done and is planned for the future. The reader is encouraged to read the er | _dri ver and
dri ver_entry documentation also.

1.6.1 Introduction

To implement anew carrier for the Erlang distribution, the main steps are as follows.

Writing an Erlang Driver

First, the protocol must be available to the Erlang machine, which involves writing an Erlang driver. A port program
cannot be used, an Erlang driver is required. Erlang drivers can be:

o Statically linked to the emulator, which can be an alternative when using the open source distribution of Erlang, or

* Dynamically loaded into the Erlang machines address space, which isthe only alternativeif aprecompiled version
of Erlang is to be used

Writing an Erlang driver is not easy. The driver is written as some callback functions called by the Erlang emulator
when datais sent to the driver, or the driver has any data available on afile descriptor. Asthe driver callback routines
execute in the main thread of the Erlang machine, the callback functions can perform no blocking activity whatsoever.
The callbacks are only to set up file descriptors for waiting and/or read/write available data. All 1/0 must be non-
blocking. Driver callbacks are however executed in sequence, why a global state can safely be updated within the
routines.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

Writing an Erlang Interface for the Driver

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. This interface can then be used by the distribution module, which will cover the
details of the protocol from thenet _ker nel .

The easiest pathisto mimicthei net andi net _t cp interfaces, but not much functionality in those modules needs
to beimplemented. In the example application, only afew of the usual interfaces areimplemented, and they are much
simplified.

Writing a Distribution Module

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well-defined callbacks, much likeagen_ser ver (thereisno
compiler support for checking the callbacks, though). This module implements:

e Thedetails of finding other nodes (that is, talking to eprnd or something similar)

» Creating alisten port (or similar)

e Connecting to other nodes

» Performing the handshakes/cookie verification

Thereis however autility module, di st _ut i | , which does most of the hard work of handling handshakes, cookies,

timers, and ticking. Using di st _uti | makes implementing a distribution module much easier and that is done in
the exampl e application.

Creating Boot Scripts

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when all the system is running, but in areal system the distribution isto
start very early, why a boot script and some command-line parameters are necessary.

This step also impliesthat the Erlang codein the interface and distribution modulesiswritten in such away that it can
be run in the startup phase. In particular, there can be no callsto the appl i cat i on module or to any modules not
loaded at boot time. That is, only Ker nel , STDLI B, and the application itself can be used.

1.6.2 The Driver

Although Erlang driversin general can be beyond the scope of this section, a brief introduction seemsto be in place.

Drivers in General

An Erlang driver is a native code module written in C (or assembler), which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/
O. An Erlang driver can be dynamically linked (or loaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the driversin OTP are however statically linked to the runtime system, but that is more an
optimization than a necessity.

Thedriver datatypesand the functions availableto the driver writer are defined in header fileer | _dri ver . h seated
in Erlang'sinclude directory. Seethe erl_driver documentation for details of which functions are available.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation must be non-blocking and all possible situations are to be
accounted for in the driver. A non-stable driver will affect and/or crash the whole Erlang runtime system.

The emulator calls the driver in the following situations:

* Whenthedriver isloaded. This callback must have a special name and inform the emulator of what callbacks are
to be used by returning a pointer to aEr | Dr VEnt r y struct, which isto be properly filled in (see below).

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

* When aport to the driver is opened (by aopen_por t cal from Erlang). This routine is to set up internal data
structures and return an opagque data entity of thetype Er | Dr vDat a, which is a datatype large enough to hold a
pointer. The pointer returned by thisfunction isthe first argument to all other callbacks concerning this particular
port. Itisusually called the port handle. The emulator only storesthe handle and does never try to interpret it, why
it can be virtually anything (anything not larger than a pointer that is) and can point to anything if it is a pointer.
Usually this pointer refers to a structure holding information about the particular port, as it does in the example.

« When an Erlang process sends data to the port. The data arrives as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This callback returns nothing to the caller, answers are sent to the caller
as messages (using aroutine called dr i ver _out put availableto all drivers). Thereisaso away totak ina
synchronous way to drivers, described below. There can be an additional callback function for handling data that
isfragmented (sent in adeep io-list). That interface gets the datain aform suitable for Unix wr i t ev rather than
in asingle buffer. There is no need for adistribution driver to implement such a callback, so we will not.

e When afile descriptor is signaled for input. This callback is called when the emulator detects input on a file
descriptor that the driver has marked for monitoring by using the interface dr i ver _sel ect . The mechanism
of driver select makesit possible to read non-blocking from file descriptors by calling dri ver _sel ect when
reading is needed, and then do the reading in this callback (when reading is possible). The typical scenario is
that dri ver _sel ect iscalled when an Erlang process orders aread operation, and that this routine sends the
answer when datais available on the file descriptor.

* When afile descriptor is signaled for output. This callback is called in a similar way as the previous, but when
writing to a file descriptor is possible. The usual scenario is that Erlang orders writing on a file descriptor and
that the driver callsdri ver _sel ect . When the descriptor is ready for output, this callback is called and the
driver can try to send the output. Queuing can be involved in such operations, and there are convenient queue
routines available to the driver writer to use.

* When aport is closed, either by an Erlang process or by the driver calling one of thedr i ver _fai | ure_XXX
routines. This routine is to clean up everything connected to one particular port. When other callbacks call a
driver_fail ure_XXXroutine, thisroutineisimmediately called. The callback routine issuing the error can
make no more use of the data structures for the port, as this routine surely has freed all associated data and closed
all file descriptors. If the queue utility available to driver writer is used, this routine is however not called until
the queue is empty.

* When an Erlang process calls er | ang: port _control / 3, which is asynchronous interface to drivers. The
control interface is used to set driver options, change states of ports, and so on. This interface is used alot in
the example.

e When atimer expires. The driver can set timers with the function dri ver _set _ti ner. When such timers
expire, a specific callback function is called. No timers are used in the example.

* When the whole driver is unloaded. Every resource allocated by the driver isto be freed.

The Data Structures of the Distribution Driver

The driver used for Erlang distribution is to implement areliable, order maintaining, variable length packet-oriented
protocol. All error correction, resending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream-oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big-endian 32-bit integer. As Unix domain sockets only can be used
between processes on the same machine, we do not need to code the integer in some specia endianess, but we will
do it anyway because in most situation you need to do it. Unix domain sockets are reliable and order maintaining, so
we do not need to implement resends and such in the driver.

We start writing the example Unix domain socketsdriver by declaring prototypesandfillinginastaticEr | Dr vEnt ry
structure:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1) #include
2) #include
3) #include
4) #include
5) #include
#include
7) #include
8) #include

(
(
(
(
(
(6)
(
(
(
(

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<errno.h>
<sys/types.h>
<sys/stat.h>
<sys/socket.h>

9) #include <sys/un.h>
10) #include <fcntl.h>
(11) #define HAVE UIO H
(12) #include "erl driver.h"
(13) /*
(14) ** Interface routines
(15) */
(16) static ErlDrvData uds start(ErlDrvPort port, char *buff);
(17) static void uds_stop(ErlDrvData handle);
(18) static void uds command(ErlDrvData handle, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handle, ErlDrvEvent event);
(20) static void uds output(ErlDrvData handle, ErlDrvEvent event);
(21) static void uds finish(void);
(22) static int uds control(ErlDrvData handle, unsigned int command,
(23) char* buf, int count, char** res, int res size);
(24) /* The driver entry */
(25) static ErlDrvEntry uds driver entry = {
(26) NULL, /* init, N/A */
(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready input, called when input
(31) descriptor ready */
(32) uds_output, /* ready output, called when output
(33) descriptor ready */
(34) "uds drv", /* char *driver name, the argument
(35) to open port */
(36) uds_finish, /* finish, called when unloaded */
(37) NULL, /* void * that is not used (BC) */
(38) uds_control, /* control, port control callback */
(39) NULL, /* timeout, called on timeouts */
(40) NULL, /* outputv, vector output interface */
(41) NULL, /* ready async callback */
(42) NULL, /* flush callback */
(43) NULL, /* call callback */
(44) NULL, /* event callback */
(45) ERL DRV _EXTENDED MARKER, /* Extended driver interface marker */
(46) ERL_DRV_EXTENDED MAJOR VERSION, /* Major version number */
(47) ERL DRV_EXTENDED MINOR VERSION, /* Minor version number */
(48) ERL DRV _FLAG SOFT BUSY, /* Driver flags. Soft busy flag is
(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */
(51) NULL, /* process exit callback */
(52) NULL /* stop_select callback */
(53) };

On line 1-10 the OS headers needed for the driver areincluded. Asthisdriver iswritten for Solaris, we know that the
header ui 0. h exists. Sothe preprocessor variable HAVE_UlI O _Hcan bedefined beforeer | _dri ver . hisincluded
on line 12. The definition of HAVE_UlI O_H will make the 1/0 vectors used in Erlang's driver queues to correspond
to the operating systems ditto, which is very convenient.

On line 16-23 the different callback functions are declared ("forward declarations).

32 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The driver structure is similar for statically linked-in drivers and dynamically loaded. However, some of the fields
are to be left empty (that is, initialized to NULL) in the different types of drivers. The first field (thei ni t function
pointer) is always left blank in a dynamically loaded driver, see line 26. NULL on line 37 is always to be there, the
field isno longer used and is retained for backward compatibility. No timers are used in this driver, why no callback
for timersis needed. The out put v field (line 40) can be used to implement an interface similar to Unix wri t ev
for output. The Erlang runtime system could previously not use out put v for the distribution, but it can as from
ERTS5.7.2. Asthisdriver waswritten before ERTS 5.7.2 it does not usethe out put v callback. Using theout put v
callback is preferred, asit reduces copying of data. (We will however use scatter/gather 1/O internally in the driver.)

As from ERTS 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present on line 48. As from ERTS 5.7.4 flag ERL_DRV_FLAG _SOFT_BUSY is
required for drivers that are to be used by the distribution. The soft busy flag implies that the driver can handle calls
to the out put and out put v calbacks athough it has marked itself as busy. This has always been a requirement
on drivers used by the distribution, but no capability information has been available about this previously. For more
information. see er| _dri ver: set _busy_port()).

Thisdriver waswritten before the runtime system had SMP support. Thedriver will still functionin the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. Thiscan be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein parallel.
When instances safely can executein parallél, it is safe to enable instance-specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG _USE_PORT_LOCKI NGas adriver flag. Thisisleft as an exercise for the reader.

Thus, the defined callbacks are as follows:
uds_start
Must initiate data for a port. We do not create any sockets here, only initialize data structures.
uds_stop
Called when aport is closed.
uds_comand

Handles messages from Erlang. The messages can either be plain data to be sent or more subtle instructions to
the driver. Thisfunction is here mostly for data pumping.

uds_i nput

Called when there is something to read from a socket.
uds_out put

Called when it is possible to write to a socket.
uds_finish

Caled when the driver is unloaded. A distribution driver will never be unloaded, but we include this for
completeness. To be able to clean up after oneself is always a good thing.

uds_control
The er |l ang: port _contr ol / 3 callback, which isused alot in thisimplementation.

The portsimplemented by this driver operate in two major modes, named command and dat a. In comrand mode,
only passive reading and writing (like gen_t cp: r ecv/gen_t cp: send) can be done. The port is in this mode
during the distribution handshake. When the connection is up, the port is switched to dat a mode and al data is
immediately read and passed further to the Erlang emulator. In dat a mode, no data arriving to uds_conmand is
interpreted, only packaged and sent out on the socket. Theuds_cont r ol callback doesthe switching between those
two modes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

While net _ker nel informs different subsystems that the connection is coming up, the port is to accept data to
send. However, the port should not receive any data, to avoid that data arrives from another node before every kernel
subsystem is prepared to handleit. A third mode, named i nt er medi at e, isused for thisintermediate stage.

An enum is defined for the different types of ports:

1) typedef enum {

(

(2) portTypeUnknown, /* An uninitialized port */

(3) portTypelListener, /* A listening port/socket */

(4) portTypeAcceptor, /* An intermediate stage when accepting
(5) on a listen port */

(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypeIntermediate, /* A connected open port in special

(9) half active mode */

(10) portTypeData /* A connected open port in data mode */

(11) } PortType;

The different types are as follows:
por t TypeUnknown

The type a port has when it is opened, but not bound to any file descriptor.
port Typeli st ener

A port that is connected to a listen socket. This port does not do much, no data pumping is done on this socket,
but read datais available when one is trying to do an accept on the port.

port TypeAccept or

This port is to represent the result of an accept operation. It is created when one wants to accept from a listen
socket, and it is converted to apor t Ty peComrand when the accept succeeds.

port TypeConnect or

Very similar to port TypeAccept or, an intermediate stage between the request for a connect operation and
that the socket is connected to an accepting ditto in the other end. When the sockets are connected, the port
switches typeto por t TypeCommand.

port TypeConmand

A connected socket (or accepted socket) in command mode mentioned earlier.
port Typel nt er medi at e

The intermediate stage for a connected socket. There isto be no processing of input for this socket.
port TypeDat a

The mode where data is pumped through the port and the uds_conmmand routine regards every call as a call
where sending iswanted. In thismode, all input availableisread and sent to Erlang when it arrives on the socket,
much like in the active mode of agen_t cp socket.

We study the state that is needed for the ports. Notice that not all fields are used for all types of ports. Some space
could be saved by using unions, but that would clutter the code with multiple indirections, so here is used one struct
for all types of ports, for readability:

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds data {

(4) int fd; /* File descriptor */

(5) ErlDrvPort port; /* The port identifier */

(6) int lockfd; /* The file descriptor for a lock file in
(7) case of listen sockets */

(8) Byte creation; /* The creation serial derived from the
(9) lock file */

(10) PortType type; /* Type of port */

(11) char *name; /* Short name of socket for unlink */

(12) Word sent; /* Bytes sent */

(13) Word received; /* Bytes received */

(14) struct uds data *partner; /* The partner in an accept/listen pair */
(15) struct uds data *next; /* Next structure in list */

(16) /* The input buffer and its data */

(17) int buffer size; /* The allocated size of the input buffer */
(18) int buffer pos; /* Current position in input buffer */
(19) int header pos; /* Where the current header is in the

(20) input buffer */

(21) Byte *buffer; /* The actual input buffer */

(22) } UdsData;

This structure is used for all types of ports although some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as a union of structures. However, the multiple indirections in
the code to access afield in such a structure would clutter the code too much for an example.

Thefieldsin the structure are as follows:
fd

The file descriptor of the socket associated with the port.
port

The port identifier for the port that this structure correspondsto. It is needed for most dr i ver _ XXX calls from
the driver back to the emulator.

| ockfd
If the socket is alisten socket, we use a separate (regular) file for two purposes:
* Wewant alocking mechanism that gives no race conditions, to be sure if another Erlang node uses the listen
socket name we require or if the fileis only left there from a previous (crashed) session.

e Westorethecr eat i on seria number in the file. The cr eat i on isanumber that is to change between
different instances of different Erlang emulators with the same name, so that process identifiers from one
emulator do not become valid when sent to a new emulator with the same distribution name. The creation
can be from 0 through 3 (two bits) and is stored in every process identifier sent to another node.

In a system with TCP-based distribution, this data is kept in the Erlang port mapper daemon (epnd),
which is contacted when a distributed node starts. The lock file and a convention for the UDS listen socket's
name remove the need for epnd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.
creation
The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1) rem 4. This

creation value is also written back into the lock file, so that the next invocation of the emulator finds our value
inthefile.

type
The current type/state of the port, which can be one of the values declared above.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

name

The name of the socket file (the path prefix removed), which alows for deletion (unl i nk) when the socket is
closed.

sent

How many bytesthat have been sent over the socket. This can wrap, but that is no problem for the distribution, as
the Erlang distribution is only interested in if this value has changed. (The Erlang net _ker nel ti cker uses
thisvalue by calling the driver to fetch it, which is done through the er | ang: port contr ol / 3 routine.)

recei ved
How many bytes that are read (received) from the socket, used in similar waysassent .
part ner

A pointer to another port structure, which is either the listen port from which this port is accepting a connection
or conversely. The "partner relation” is always bidirectional.

next

Pointer to next structure in a linked list of all port structures. This list is used when accepting connections and
when the driver is unloaded.

buf f er _si ze, buf f er _pos, header _pos, buffer

Data for input buffering. For details about the input buffering, see the source code in directory ker nel /
exanpl es. That certainly goes beyond the scope of this section.

Selected Parts of the Distribution Driver Implementation

The implemenation of the distribution driver is not completely covered here, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver callback routines can be found intheer | _dri ver. h header file.

The driver initidization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavors of systems). This is the only routine that must have a well-defined name. All other
callbacks are reached through the driver structure. The macro to use is named DRI VER | NI T and takes the driver
name as parameter:

(1) /* Beginning of linked list of ports */
(2) static UdsData *first data;

(3) DRIVER INIT(uds drv)

(4) {

(5) first data = NULL;

(6) return &uds driver entry;
(7) }

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine is called
whener| _ddl | : 1 oad_dri ver iscalled from Erlang.

Theuds_st art routineis called when a port is opened from Erlang. In this case, we only allocate a structure and
initialize it. Creating the actual socket isleft to theuds_comrand routine.

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static ErlDrvData uds start(ErlDrvPort port, char *buff)
(2){

(3) UdsData *ud;

(4)

(5) ud = ALLOC(sizeof(UdsData));
(6) ud->fd = -1;

(7) ud->lockfd = -1;

(8) ud->creation = 0;

(9) ud->port = port;

(10) ud->type = portTypeUnknown;
(11) ud->name = NULL;

(12) ud->buffer size = 0;

(13) ud->buffer pos = 0;

(14) ud->header pos = 0;

(15) ud->buffer = NULL;

(16) ud->sent = 0;

(17) ud->received = 0;

(18) ud->partner = NULL;

(19) ud->next = first data;

(20) first data = ud;

(21)

(22) return((ErlDrvData) ud);
(23) }

Every data item is initialized, so that no problems arise when a newly created port is closed (without there being
any corresponding socket). Thisroutineis called when open_port ({spawn, "uds_drv"},[]) iscaledfrom
Erlang.

Theuds_comrand routine is the routine called when an Erlang process sends data to the port. This routine handles
all asynchronous commands when the port isin command mode and the sending of all datawhen the portisin dat a
mode:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static void uds_command(ErlDrvData handle, char *buff, int bufflen)

(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeData || ud->type == portTypelntermediate) {
(5) DEBUGF (("Passive do _send %d",bufflen));

(6) do send(ud, buff + 1, bufflen - 1); /* XXX */
(7) return;

(8) }

(9) if (bufflen == 0) {

(10) return;

(11) }

(12) switch (*buff) {

(13) case 'L':

(14) if (ud->type !'= portTypeUnknown) {

(15) driver failure posix(ud->port, ENOTSUP);
(16) return;

(17) }

(18) uds_command_listen(ud,buff,bufflen);

(19) return;

(20) case 'A':

(21) if (ud->type !'= portTypeUnknown) {

(22) driver failure posix(ud->port, ENOTSUP);
(23) return;

(24) }

(25) uds_command_accept(ud,buff,bufflen);

(26) return;

(27) case 'C':

(28) if (ud->type !'= portTypeUnknown) {

(29) driver failure posix(ud->port, ENOTSUP);
(30) return;

(31) }

(32) uds_command_connect (ud,buff,bufflen);

(33) return;

(34) case 'S':

(35) if (ud->type != portTypeCommand) {

(36) driver failure posix(ud->port, ENOTSUP);
(37) return;

(38))

(39) do_send(ud, buff + 1, bufflen - 1);

(40) return;

(41) case 'R':

(42) if (ud->type !'= portTypeCommand) {

(43) driver failure posix(ud->port, ENOTSUP);
(44) return;

(45))

(46) do recv(ud);

(47) return;

(48) default:

(49) return;

(50) }

(51) }

The command routine takes three parameters; the handle returned for the port by uds_st ar t , which isapointer to
the internal port structure, the data buffer, and the length of the data buffer. The buffer is the data sent from Erlang
(alist of bytes) converted to an C array (of bytes).

If Erlang sends, for example, the list [$a, $b, $c] to the port, the buf f | en variable is 3 and the buf f variable
contains{'a','b',"'c'} (noNULL termination). Usualy the first byte is used as an opcode, which isthe case in
this driver too (at least when the port isin command mode). The opcodes are defined as follows:

'L' <socket nane>
Creates and listens on socket with the specified name.

38 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

"A' <listen nunber as 32-bit big-endi an>

Accepts from the listen socket identified by the specified identification number. The identification number is
retrieved with theuds_cont r ol routine.

' C <socket name>
Connects to the socket named <socket name>.
'S <dat a>

Sends the data <data> on the connected/accepted socket (in conmmand mode). The sending is acknowledged
when the data has | eft this process.

) RI
Receives one packet of data.

"One packet of data" in command ' R can be explained as follows. This driver always sends data packaged with a
4 byte header containing a big-endian 32-bit integer that represents the length of the data in the packet. There is no
need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. Why is the
header word coded explicitly in big-endian when a UDS socket is local to the host? It is good practice when writing
adistribution driver, as distribution in practice usually crosses the host boundaries.

On line 4-8 is handled the case where the port isin dat a modeor i nt er nedi at e mode and the remaining routine
handles the different commands. The routine usesthedri ver _fai |l ure_posi x() routine to report errors (see,
for example, line 15). Notice that the failure routines make a call to the uds_ st op routine, which will remove the
internal port data. The handle (and the casted handle ud) is therefore invalid pointers after adri ver _fail ure
call and we should return immediately. The runtime system will send exit signalsto al linked processes.

The uds_i nput routine is caled when data is available on a file descriptor previousy passed to the
driver_sel ect routine. This occurs typically when a read command is issued and no data is available. The
do_recv routineisasfollows:

1) static void do recv(UdsData *ud)

(

(2) A4

(3) int res;

(4) char *ibuf;

(5) for(;;) {

(6) if ((res = buffered read package(ud,&ibuf)) < 0) {

(7) if (res == NORMAL READ FAILURE) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(9) } else {

(10) driver failure eof(ud->port);

(11) }

(12) return;

(13) }

(14) /* Got a package */

(15) if (ud->type == portTypeCommand) {

(16) ibuf[-1] = 'R'; /* There is always room for a single byte
(17) opcode before the actual buffer

(18) (where the packet header was) */

(19) driver output(ud->port,ibuf - 1, res + 1);

(20) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,O0);
(21) return;

(22) } else {

(23) ibuf[-1] = DIST MAGIC RECV TAG; /* XXX */

(24) driver output(ud->port,ibuf - 1, res + 1);

(25) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,1);
(26) }

(27) }

(28) }

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The routine tries to read data until a packet is read or the buf f er ed_r ead_package routine returns a
NORMAL_READ FAI LURE (an internally defined constant for the module, which means that the read operation
resulted in an EAWOULDBL OCK). If the port isin command mode, the reading stops when one package is read. If the
port isin dat a mode, the reading continues until the socket buffer is empty (read failure). If no more data can be
read and moreiswanted (which is always the case when the socket isin dat a mode), dri ver _sel ect iscalledto
make theuds_i nput calback be called when more datais available for reading.

When the port isin dat a mode, all datais sent to Erlang in aformat that suits the distribution. In fact, the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data is to be tagged with a single
byte of 100. That iswhat the macro DI ST_MAG C_RECV_TAGis defined to. The tagging of data in the distribution
can be changed in the future.

Theuds_i nput routine handles other input events (like non-blocking accept), but most importantly handle data
arriving at the socket by callingdo_r ecv:

(1) static void uds input(ErlDrvData handle, ErlDrvEvent event)

(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypelListener) {

(5) UdsData *ad = ud->partner;

(6) struct sockaddr un peer;

(7) int pl = sizeof(struct sockaddr un);

(8) int fd;

(9) if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno '= EWOULDBLOCK) {

(11) driver failure posix(ud->port, errno);
(12) return;

(13) }

(14) return;

(15) }

(16) SET _NONBLOCKING(fd);

(17) ad->fd = fd;

(18) ad->partner = NULL;

(19) ad->type = portTypeCommand;

(20) ud->partner = NULL;

(21) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(22) driver output(ad->port, "Aok",3);

(23) return;

(24) }

(25) do_recv(ud);

(26) }

The important lineis the last line in the function: the do_r ead routineis called to handle new input. The remaining
function handles input on a listen socket, which means that it is to be possible to do an accept on the socket, which
isalso recognized as aread event.

The output mechanisms are similar to the input. Thedo_send routineis as follows:

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static void do_send(UdsData *ud, char *buff, int bufflen)
(2){

(3) char header[4];

(4) int written;

(5) SysIOVec iov[2];

(6) ErlIOVec eio;

(7) ErlDrvBinary *binv[] = {NULL,NULL};

(8) put _packet length(header, bufflen);

(9) iov[0].iov_base = (char *) header;

(10) iov[0].iov_len = 4;

(11) iov[1l].iov_base = buff;

(12) iov[1l].iov_len = bufflen;

(13) eio.iov = iov;

(14) eio.binv = binv;

(15) eio.vsize = 2;

(16) eio.size = bufflen + 4;

(17) written = 0;

(18) if (driver sizeq(ud->port) == 0) {

(19) if ((written = writev(ud->fd, iov, 2)) == eio.size) {
(20) ud->sent += written;

(21) if (ud->type == portTypeCommand) {
(22) driver output(ud->port, "Sok", 3);
(23))

(24) return;

(25) } else if (written < 0) {

(26) if (errno != EWOULDBLOCK) {

(27) driver failure eof(ud->port);
(28) return;

(29) } else {

(30) written = 0;

(31))

(32) } else {

(33) ud->sent += written;

(34) h

(35) /* Enqueue remaining */

(36) ¥

(37) driver_enqv(ud->port, &eio, written);

(38) send _out queue(ud);

(39) }

This driver uses the wr i t ev system call to send data onto the socket. A combination of wri t ev and the driver
output queuesisvery convenient. AnEr | | OVec structurecontainsaSys| OVec (whichisequivalenttothest r uct

i ovec structuredefinedinui 0. h. TheEr | | Ovec also containsan array of Er | Dr vBi nar y pointers, of the same
length asthe number of buffersinthe /O vector itself. One can usethisto allocate the binariesfor the queue "manually"
in the driver, but here the binary array is filled with NULL values (line 7). The runtime system then allocates its own
bufferswhendri ver _enqv iscaled (line 37).

Theroutinebuildsan I/O vector containing the header bytes and the buffer (the opcode has been removed and the buffer
length decreased by the output routine). If the queue is empty, we write the data directly to the socket (or at least try
to). If any dataisleft, it is stored in the queue and then we try to send the queue (line 38). An acknowledgement is sent
when the messageisdelivered completely (line22). Thesend_out _queue sends acknowledgementsif the sending
is completed there. If the port isin command mode, the Erlang code serializes the send operations so that only one
packet can be waiting for delivery at atime. Therefore the acknowledgement can be sent whenever the queueis empty.

Thesend_out _queue routineisasfollows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static int send out queue(UdsData *ud)

(2) {

(3) for(;;) {

(4) int vlen;

(5) SysIOVec *tmp = driver peekq(ud->port, &vlen);
(6) int wrote;

(7) if (tmp == NULL) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
(9) if (ud->type == portTypeCommand) {

(10) driver output(ud->port, "Sok", 3);
(11))

(12) return 0;

(13) b

(14) if (vlen > IO VECTOR MAX) {

(15) vlen = I0 VECTOR MAX;

(16) b

(17) if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
(18) if (errno == EWOULDBLOCK) {

(19) driver select(ud->port, (ErlDrvEvent) ud->fd,
(20) DO WRITE, 1);

(21) return 0;

(22) } else {

(23) driver failure eof(ud->port);

(24) return -1;

(25))

(26) h

(27) driver deq(ud->port, wrote);

(28) ud->sent += wrote;

(29) }

(30) }

We simply pick out an 1/0 vector from the queue (which is the whole queue asa Sy s| Ovec). If the I/O vector istoo
long (I O_VECTOR_MAX is defined to 16), the vector length is decreased (line 15), otherwisethewr i t ev cal (line
17) fails. Writing is tried and anything written is dequeued (line 27). If the write fails with EAOULDBLOCK (notice
that all sockets are in non-blocking mode), dri ver _sel ect iscalled to maketheuds_out put routine be called
when there is space to write again.

We continue trying to write until the queue is empty or the writing blocks.
The routine aboveis called from theuds_out put routine:

(1) static void uds output(ErlDrvData handle, ErlDrvEvent event)
(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeConnector) {

(5) ud->type = portTypeCommand;

(6) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
(7) driver output(ud->port, "Cok",3);

(8) return;

(9) }

(10) send out queue(ud);

(11) }

Theroutineissimple: it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket isin a connected state, it simply sends the output queue. This routine is
called when it is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface caled when Erlang calls
erl ang: port_control /3. Only thisinterface can control the driver when it isin dat a mode. It can be called
with the following opcodes:

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

'R

Sets port in command mode.

Setsportini nt er nedi at e mode.

Setsport in dat a mode.

Getsidentification number for listen port. Thisidentification number is used in an accept command to the driver.
It isreturned as a big-endian 32-bit integer, which isthe file identifier for the listen socket.

Gets statistics, whichisthe number of bytesreceived, the number of bytes sent, and the number of bytespendingin
the output queue. This datais used when the distribution checksthat a connection isalive (ticking). The statistics
isreturned as three 32-bit big-endian integers.

Sends a tick message, which is a packet of length 0. Ticking is done when the port is in dat a mode, so the
command for sending data cannot be used (besides it ignores zero length packages in conmand mode). Thisis
used by the ticker to send dummy data when no other traffic is present.

Note: It is important that the interface for sending ticks is not blocking. This implementation uses
erl ang: port_control /3, which does not block the caler. If erl ang: port_conmand is used, use
erl ang: port_comrand/ 3 andpass[f or ce] asoptionlist; otherwisethe caller can be blocked indefinitely
on abusy port and prevent the system from taking down a connection that is not functioning.

Gets creation number of alisten socket, which is used to dig out the number stored in the lock fileto differentiate
between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to alocate its own buffer if the provided one is
too small. Theuds_cont r ol codeisasfollows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1) static int uds control(ErlDrvData handle, unsigned int command,
2) char* buf, int count, char** res, int res size)

3) {

4) /* Local macro to ensure large enough buffer. */

(
(
(
(
(
(6) do {
(
(
(
(

5) #define ENSURE(N) \
\

7) if (res size < N) { \

8) *res = ALLOC(N); \

9) } \

10) } while(0)
(11) UdsData *ud = (UdsData *) handle;
(12) switch (command) {
(13) case 'S':
(14) {
(15) ENSURE (13) ;
(16) **res = 0;
(17) put _packet length((*res) + 1, ud->received);
(18) put _packet length((*res) + 5, ud->sent);
(19) put_packet length((*res) + 9, driver sizeq(ud->port));
(20) return 13;
(21) }
(22) case 'C':
(23) if (ud->type < portTypeCommand) {
(24) return report _control error(res, res size, "einval");
(25) }
(26) ud->type = portTypeCommand;
(27) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(28) ENSURE (1) ;
(29) **res = 0;
(30) return 1;
(31) case 'I':
(32) if (ud->type < portTypeCommand) {
(33) return report _control error(res, res size, "einval");
(34) }
(35) ud->type = portTypelntermediate;
(36) driver select(ud->port, (ErlDrvEvent) ud->fd, DO _READ, 0);
(37) ENSURE (1) ;
(38) **res = 0;
(39) return 1;
(40) case 'D':
(41) if (ud->type < portTypeCommand) {
(42) return report _control error(res, res size, "einval");
(43) }
(44) ud->type = portTypeData;
(45) do recv(ud);
(46) ENSURE (1) ;
(47) **res = 0;
(48) return 1;
(49) case 'N':
(50) if (ud->type != portTypelListener) {
(51) return report _control error(res, res size, "einval");
(52) }
(53) ENSURE(5) ;
(54) (*res)[0] = 0;
(55) put packet length((*res) + 1, ud->fd);
(56) return 5;
(57) case 'T': /* tick */
(58) if (ud->type != portTypeData) {
(59) return report _control error(res, res size, "einval");
(60) ¥
(61) do send(ud,"",0);
(62) ENSURE (1) ;
(63) **res = 0;

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(64) return 1;

(65) case 'R':

(66) if (ud->type != portTypelListener) {

(67) return report _control error(res, res size, "einval");
(68) }

(69) ENSURE(2) ;

(70) (*res)[0] = 0;

(71) (*res)[1] = ud->creation;

(72) return 2;

(73) default:

(74) return report control error(res, res size, "einval");
(75) }

(76) #undef ENSURE

(77) }

The macro ENSURE (line 5-10) is used to ensure that the buffer is large enough for the answer. We switch on the
command and take actions. We always have read select activeon aport in dat a mode (achieved by calingdo_r ecv
on line 45), but we turn off read selectionini nt er medi at e and conmand modes (line 27 and 36).

Therest of the driver is more or less UDS-specific and not of general interest.

1.6.3 Putting It All Together

To test the distribution, the net _ker nel : st art/ 1 function can be used. It is useful, as it starts the distribution
on arunning system, where tracing/debugging can be performed. The net _kernel : start/ 1 routine takesalist
as its single argument. The list first element in the list is to be the node name (without the "@hostname™) as an
atom. The second (and last) element is to be one of the atoms shor t nanes or | ongnamnes. In the example case,
shor t nanes is preferred.

Fornet _ker nel tofind out which distribution moduleto use, command-lineargument - pr ot o_di st isused. Itis
followed by one or more distribution module names, with suffix *_dist" removed, that is, uds_di st asadistribution
moduleis specified as- prot o_di st uds.

If noepnd (TCP port mapper daemon) is used, also command-line option - no_epnd isto be specified, which makes
Erlang skip the epnd startup, both as an OS process and as an Erlang ditto.

The path to the directory where the distribution modules reside must be known at boot. This can be achieved either by
specifying - pa <pat h> on the command line or by building a boot script containing the applications used for your
distribution protocol. (Intheuds_di st protocol, only theuds_di st application needs to be added to the script.)

Thedistribution startsat boot if all the aboveisspecifiedandan- snane <nane> flagispresent at the command line.

Example 1:

$ erl -pa $ERL TOP/lib/kernel/examples/uds_dist/ebin -proto dist uds -no_epmd
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with "G)

1> net kernel:start([bing,shortnames]).
{ok,<0.30.0>}

(bing@hador)2>

Example 2:
$ erl -pa $ERL TOP/lib/kernel/examples/uds dist/ebin -proto dist uds \
-no_epmd -sname bong

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bong@hador) 1>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

1.7 The Abstract Format

The ERL_FLAGS environment variable can be used to store the complicated parametersin:

$ ERL_FLAGS=-pa $ERL TOP/lib/kernel/examples/uds dist/ebin \
-proto dist uds -no_epmd

$ export ERL_FLAGS

$ erl -sname bang

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with "G)
(bang@hador) 1>

ERL_ FLAGS should not include the node name.

1.7 The Abstract Format

This section describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation isknown asthe abstract for mat. Functions dealing with such parsetreesare conpi |l e: fornms/ 1, 2
and functions in the following modules:

* epp(3)

e erl_eval (3)

e erl_lint(3)

e erl_parse(3)

e erl_pp(3)

e i0(3)

The functions are also used as input and output for parse transforms, seethe conpi | e(3) module.

We use the function Rep to denote the mapping from an Erlang source construct Cto its abstract format representation
R, andwriteR = Rep(C).

The word LI NE in this section represents an integer, and denotes the number of the line in the source file where the
construction occurred. Severa instances of LI NE in the same construction can denote different lines.

As operators are not terms in their own right, when operators are mentioned below, the representation of an operator
isto be taken to be the atom with a printname consisting of the same characters as the operator.

1.7.1 Module Declarations and Forms

A module declaration consists of a sequence of forms, which are either function declarations or attributes.

e |If D is a module declaration consisting of the forms F_1, ..., F_k, then Rep(D) = [Rep(F_1), ...,
Rep(F_k)].

 If F is an attribute -export([Fun_1/A 1, ce Fun_k/ A k]), then Rep(F) =
{attribute, LI NE, export,[{Fun_1,A 1}, ..., {Fun_k, A k}1}.

« If F is an attribute -inport(Md,[Fun_1/A 1, e Fun_k/ A k]), then Rep(F) =
{attribute, LINE, inport,{Md,[{Fun_1,A 1}, ..., {Fun_k, A k}]}}.

e If Fisanattribute - nodul e(Mod) , then Rep(F) ={at t ri but e, LI NE, nodul e, Mbd}.

o IfFisanattribute-file(File, Line),thenRep(F)={attribute, LINE file,{File,Line}}.

e |If Fisafunction declaration Name Fc_1 ; ... ; Nane Fc_k, where each Fc_i is a function
clause with a pattern sequence of the samelength Ari t y, then Rep(F) ={f uncti on, LI NE, Nane, Ari ty,
[Rep(Fc_1), ...,Rep(Fc_k)]}.

« If Fisafunction specification - Spec Name Ft_1; ...; Ft_k, whereSpec iseither the atom spec or
theatom cal | back, and each Ft _i isapossibly constrained function type with an argument sequence of the

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 The Abstract Format

samelength Ari ty, then Rep(F) ={attri but e, Li ne, Spec, {{Nane, Arity},[Rep(Ft_1), ...,
Rep(Ft _k)]1}}.

« If F is a function specification -spec Md: Name Ft_1; ...; Ft_k, whereeach Ft i isa
possibly constrained function type with an argument sequence of the same length Ari ty, then Rep(F) =
{attribute, Line, spec, {{Md, Nane, Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}.

e If Fisarecord declaration - r ecord(Nane, {V_1, ..., V_k}),whereeachV_i isarecord field, then
Rep(F) ={attribute, LINE, record, {Nanme, [Rep(V_1), ..., Rep(V_k)]}}.ForRep(V), see
below.

* If Fisatype declaration - Type Name(V_1, ..., V_k) :: T, whereType iseither the atomt ype
or the atom opaque, each V_i isavariable, and T is a type, then Rep(F) = {attri but e, LI NE, Type,

* If Fisawildattribute- A(T) ,thenRep(F) ={attri bute, LI NE, A T}.

Record Fields

Each field in arecord declaration can have an optional, explicit, default initializer expression, and an optional type.
o IfVisAthenRep(V)={record_field, LI NE Rep(A)}.

e IfVisA = E,whereEisanexpression, then Rep(V)={record field, LI NE, Rep(A), Rep(E)}.

e If V is A e T, where T is a type then Rep(V) = {typed_record field,
{record_field, LINE Rep(A)}, Rep(T)}.

« IfVisA = E :: T,whereEisanexpressionand T isatype, then Rep(V) ={typed_record_fi el d,
{record _field, LINE, Rep(A), Rep(E)}, Rep(T)}.
Representation of Parse Errors and End-of-File

In addition to the representations of forms, the list that represents a module declaration (as returned by functionsin
epp(3) anderl _par se(3)) can contain the following:

e Tuples{error, E} and{war ni ng, W, denoting syntactically incorrect forms and warnings.

« {eof, LOCATI ON}, denoting an end-of-stream encountered before a complete form had been parsed. The word
LOCATI ON represents an integer, and denotes the number of the last line in the source file.

1.7.2 Atomic Literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions, and guards:

e IfLisanatomliteral, then Rep(L) ={ at om LI NE, L}.

* If L isacharacter literal, then Rep(L) ={ char, LI NE, L}.

e IfLisafloat literal, then Rep(L) ={f | oat, LI NE, L}.

e If Lisaninteger literal, then Rep(L) ={i nt eger, LI NE, L}.

e IfLisasdtringlitera consisting of the charactersC 1, ...,C k,thenRep(L)={string, LINE [C 1, ...,
C Kk]}.

Notice that negative integer and float literals do not occur as such; they are parsed as an application of the unary
negation operator.

1.7.3 Patterns

If Psisasequenceof patternsP_1, ..., P_k,thenRep(Ps)=[Rep(P_1), ..., Rep(P_k)] .Suchsequences
occur asthe list of argumentsto afunction or fun.

Individual patterns are represented as follows:
e |If Pisanatomic literal L, then Rep(P) = Rep(L).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

1.7 The Abstract Format

If P is a bitstring pattern <<P_1: Size 1/ TSL_1, Ce P_k: Size_k/TSL_k>>, where each
Si ze_i isan expression that can be evaluated to an integer, and each TSL_i is a type specificer list, then
Rep(P) = {bi n, LINE, [{bi n_el erent, LI NE, Rep(P_1), Rep(Si ze_1), Rep(TSL_1)}, ...,
{bin_el ement, LI NE, Rep(P_k), Rep(Si ze_k), Rep(TSL_k) }]}. For Rep(TSL), see below. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

If Pisacompound patternP_1 = P_2,then Rep(P) ={ mat ch, LI NE, Rep(P_1), Rep(P_2)}.

If Pisaconspattern[P_h | P_t],then Rep(P) ={cons, LI NE, Rep(P_h), Rep(P_t)}.

If Pisamap pattern#{ A 1, ..., A k},whereeachA i isanassociationP_i _1 : = P_i _2,then Rep(P)
={map, LINE, [Rep(A_1), ..., Rep(A_K)]}.ForRep(A), seebelow.

If Pisanil pattern[], then Rep(P) ={ni | , L1 NE} .

If Pisan operator patternP_1 OQp P_2, where Op isabinary operator (thisiseither an occurrence of ++ applied
to aliteral string or character list, or an occurrence of an expression that can be evaluated to a number at compile
time), then Rep(P) ={ op, LI NE, Op, Rep(P_1), Rep(P_2)}.

If Pisan operator pattern Qo P_0, where Op isaunary operator (thisis an occurrence of an expression that can
be evaluated to a number at compile time), then Rep(P) ={ op, LI NE, Op, Rep(P_0) }.

If Pisaparenthesized pattern (P_0), then Rep(P) = Rep(P_0) , that is, parenthesized patterns cannot be
distinguished from their bodies.

If P is a record field index pattern #Nane. Fi el d, where Fiel d is an atom, then Rep(P) =
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

If P is a record patteen #Nanme{Field_ 1=P 1, C Fi el d_k=P_k},
where each Field_i is an atom or . then Rep(P) =
{record, LI NE, Nane, [{record_field, LINE, Rep(Field_1), Rep(P_1)}, ce
{record_field,LINE Rep(Field k), Rp(P_k)}1}.

If Pis a tuple pattern {P_1, ..., P_k}, then Rep(P) = {tuple, LINE, [Rep(P_1), ...,
Rep(P_k)1}.

If Pisauniversal pattern _, thenRep(P) ={var, LINE,"' _'}.

If Pisavariable pattern V, then Rep(P) = { var, LI NE, A}, where A is an atom with a printname consisting of
the same characters as V.

Notice that every pattern has the same source form as some expression, and is represented in the same way as the
corresponding expression.

1.7.4 Expressions

A body B is a non-empty sequence of expressionsE 1, ..., E k, and Rep(B) =[Rep(E_ 1), ...,
Rep(E_k)].

An expression E is one of the following:

If Eisan atomic literal L, then Rep(E) = Rep(L).

If Eisabitstring comprehension<<E_0 || Q_1, ..., Q_k>> whereeachQ i isaqudifier, then Rep(E)
={bc,LINE, Rep(E 0),[Rep(Q.1), ..., Rep(QKk)]}.ForRep(Q), seebelow.

If E is a bitstring constructor <<E 1:Size_ 1/TSL_1, Ce E k: Si ze_k/ TSL_k>>,
where each Size_i is an expresson and each TSL_i is a type specificer list, then
Rep(E) = {bi n, LI NE, [{bi n_el ement, LI NE, Rep(E_1), Rep(Si ze_1), Rep(TSL_1)}, ...,
{bin_el ement, LI NE, Rep(E_k), Rep(Si ze_k), Rep(TSL_k) }]}. For Rep(TSL), see below. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

If Eisablock expression begi n B end, where Bisabody, then Rep(E) = { bl ock, LI NE, Rep(B) }.

If Eisacaseexpressioncase E 0 of Cc_1 ; ... ; Cc_k end,whereE_0 isan expression and each
Cc_i isacaseclause, thenRep(E) ={' case', LI NE, Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_Kk)]}.

If Eisacatch expressioncat ch E_0,thenRep(E) ={' catch', LI NE, Rep(E_0)}.

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 The Abstract Format

If Eisaconsskeleton[E_h | E_t],thenRep(E)={cons, LI NE, Rep(E_h), Rep(E_t)}.
If Eisafunexpressionf un Name/ Arity,thenRep(E)={"'fun', LINE, {function, Nane, Arity}}.

If E is a fun expression fun Modul e: Narme/ Arity, then Rep(E) = {'fun', LINE,
{function, Rep(Modul e), Rep(Nane), Rep(Arity)}}. (Before Erlang/lOTP R15: Rep(E) =
{' fun',LINE, {function, Modul e, Nane, Arity}}.)

If Eisafunexpressionfun Fc_1 ; ... ; Fc_k end,whereeach Fc_i isafunction clause, then Rep(E)
={'fun',LINE {cl auses, [Rep(Fc_1), ..., Rep(Fc_k)]}}.

If Eisafunexpressionf un Name Fc_1; ... ; Nane Fc_k end,whereNane isavariableandeachFc_i
isafunction clause, then Rep(E) = { nanmed_f un, LI NE, Name, [Rep(Fc_1), ..., Rep(Fc_k)]}.

If E is a function cal E_O(E_1, Ceey E k), then Rep(E) = {call, LI NE, Rep(E_0),
[Rep(E_ 1), ..., Rep(E K)]}.

If E is a function cdl E mE O(E_1, E k), then Rep(E) = {call, LINE,
{renote, LINE, Rep(E n),Rep(E 0)},[Rep(E_1), ..., Rep(E Kk)]}.

If Eisanif expressionif lc_1 ; ... ; lc_k end,whereeachlc_i isanif clause, then Rep(E) =
{"if',LINE [Rep(lc_1), ..., Rep(lc_k)1}.

If Eisalist comprehension[E O || Q1, ..., QK],whereeach Qi isaqudifier, then Rep(E) =
{lc,LINE, Rep(E_ 0),[Rep(Q 1), ..., Rep(QKk)]}.ForRep(Q), seebelow.

If Eisamapcreation#{ A 1, ..., A k},whereeachA i isanassociationE i 1 =>E i _2orE i _1:=
E i_2,thenRep(E) ={map, LI NE, [Rep(A_1), ..., Rep(A_k)]}.ForRep(A), seebelow.

If Eisamap update E_O#{A 1, ..., A k},whereeach A i isanassociationE i _1 => E i_2or
Ei_1 := E_i_2,thenRep(E) ={map, LI NE, Rep(E_0),[Rep(A_1), ..., Rep(AK)]}.For
Rep(A), see below.

If E is a match operator expression P = E 0, where P is a pattern, then Rep(E) =

{mat ch, LI NE, Rep(P), Rep(E_0)}.

If Eisnil,[],then Rep(E) ={ni |, LI NE}.

If Eisan operator expression E_ 1 Op E_2, where Op is abinary operator other than match operator =, then
Rep(E) ={op, LI NE, Op, Rep(E_1), Rep(E_2)}.

If E is an operator expresson Op E 0, where Op is a unary operator, then Rep(E) =
{op, LINE, Op, Rep(E_0)}.

If Eisaparenthesized expression(E_0), then Rep(E) = Rep(E_0) , that is, parenthesized expressions cannot
be distinguished from their bodies.

If Eisareceiveexpressionreceive Cc_1 ; ... ; Cc_k end,whereeach Cc_i isacaseclause, then
Rep(E)={'receive' ,LINE, [Rep(Cc_1), ..., Rep(Cc_k)]}.

If Eisareceive expressionreceive Cc_1 ; ... ; Cc_k after EO -> Bt end, where
each Cc_i isacaseclause, E O is an expression, and B_t is a body, then Rep(E) ={' recei ve', LI NE,
[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B t)}.

If E is a record creation #Nane{Field 1=E 1, ce Fi el d_k=E k},
where each Field_i is an atom or , then Rep(E) =

{record, LI NE, Nane, [{record _field, LINE, Rep(Field_ 1), Rgp(E 1)}, ce
{record field,LINE Rep(Field k), Rep(E_k)}1}.

If E is a record field access E_O#Nane. Fi el d, where Field is an aom, then Rep(E)
{record_field,LINE Rep(E_0), Nane, Rep(Fi el d)}.

If E is a record field index #Nane.Field, where Field is an atom, then Rep(E)
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

If E is a record update E O#Name{Fiel d_1=E 1, ..
Fi el d_k=E k}, where each Field_i is an atom, then Rep(E)
{record, LI NE, Rep(E_0), Nane, [{record_field, LINE, Rep(Field 1),Rep(E_ 1)}, ...,
{record_field,LINE Rep(Field k), Rep(E_k)}1}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

1.7 The Abstract Format

o If Eisatuple skeleton {E_1, ..., E_k}, then Rep(E) = {tuple, LINE, [Rep(E_1), ...,
Rep(E_k)1}.

e |IfEisatryexpressontry B catch Tc_1 ; ... ; Tc_k end,whereBisabody andeachTc i isa
catch clause, then Rep(E) ={' try' , LINE, Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[1}.
 |IfEisatryexpressontry B of Cc_1; ... ; Cc_k catch Tc_1; ... ; Tc_n end,whereBis
abody, each Cc_i isacaseclause, andeach Tc_j isacatch clause, thenRep(E)={' try', LI NE, Rep(B),

[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[1}.

e |If Eisatry expression try B after A end, where B and A are bodies, then Rep(E) =
{"try",LINE Rep(B),[].[],Rep(A)}.

« |IfEisatryexpressontry B of Cc_1; ... ; Cc_k after A end,whereBandAareabodies, and
eachCc_i isacaseclause thenRep(E)={'try', LI NE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],
[].Rep(A)}.

« |IfEisatry expressontry B catch Tc_1 ; ... ; Tc_k after A end, whereBand A are

bodies, and each Tc_i isacatch clause, thenRep(E)={' try', LI NE, Rep(B),[],[Rep(Tc_1), ...,
Rep(Tc_k)], Rep(A)}.

e IfEisatry expressontry B of Cc_ 1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n
after A end, where B and A are a bodies, each Cc_i isacase clause, and each Tc_|j is a catch clause,
then Rep(E) ={'try', LINE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,

Rep(Tc_n)], Rep(A)}.
* IfEisavariableV, then Rep(E) ={ var, LI NE, A}, where Aisan atom with a printname consisting of the same
charactersas V.

Qualifiers
A quadlifier Q isone of the following:
* If Qisafilter E, where E is an expression, then Rep(Q) = Rep(E) .

e If Q is a generator P <- E, where P is a pattern and E is an expression, then Rep(Q)
{generate, LI NE, Rep(P), Rep(E) }.

 |If Q is a bitstring generator P <= E, where P is a pattern and E is an expression, then Rep(Q)
{b_generate, LINE, Rep(P), Rep(E) }.

Bitstring Element Type Specifiers

A type specifier list TSL for abitstring element isa sequence of type specifiersTS 1 - ... - TS k,andRep(TSL)
=[Rep(TS_1), ..., Rep(TS_Kk)].

e |f TSisatype specifier A, where A is an atom, then Rep(TS) = A.

« If TSisatype specifier A: Val ue, where Aisan atom and Val ue isan integer, then Rep(TS) ={ A, Val ue}.
Associations

An association A is one of the following:

e [IfAisanassociationK => V, thenRep(A) ={map_fi el d_assoc, LI NE, Rep(K), Rep(V)}.
 If AisanassociationK : = V,thenRep(A) ={map_fi el d_exact, LI NE, Rep(K), Rep(V)}.

1.7.5 Clauses
There are function clauses, if clauses, case clauses, and catch clauses.
A clause C is one of the following:

» |IfCisacaseclauseP - > B, wherePisapattern and Bisabody, then Rep(C) ={ cl ause, LI NE, [Rep(P)],
[]1,Rep(B)}.

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 The Abstract Format

e |IfCisacaseclauseP when Gs -> B, whereP isapattern, Gs isaguard sequence, and B is a body, then
Rep(C) ={cl ause, LINE, [Rep(P)], Rep(Gs), Rep(B) }.

e |IfCisacachclause P -> B, where P is a pattern and B is a body, then Rep(C) = { cl ause, LI NE,
[Rep({throw, P, _})].[],Rep(B)}.

e |IfCisacachclause X : P -> B, whereXisan atomic literal or avariable pattern, P is a pattern, and Bisa
body, then Rep(C) ={ cl ause, LINE, [Rep({X, P, _})].[], Rep(B)}.

« |IfCisacachclause P when Gs -> B, whereP isapattern, Gs isaguard sequence, and B is a body, then
Rep(C) ={cl ause, LINE, [Rep({throw, P, _})], Rep(Gs), Rep(B)}.

e IfCisacachclause X : P when Gs -> B, whee X is an atomic litera or a variable
pattern, P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {cl ause, LI NE,
[Rep({X, P, _})],Rep(Gs),Rep(B)}.

e |IfCisafunctionclause(Ps) -> B, wherePs is a pattern sequence and B is a body, then Rep(C) =
{cl ause, LI NE, Rep(Ps),[], Rep(B)}.

e IfCisafunctionclause(Ps) when Gs -> B,wherePs isapattern sequence, Gs isaguard sequence and
Bisabody, then Rep(C) ={ cl ause, LI NE, Rep(Ps), Rep(Gs), Rep(B)}.

e IfCisanifclauseGs -> B, whereGs isaguard sequence and B isabody, then Rep(C) = { cl ause, LI NE,
[1,Rep(Gs), Rep(B)}.

1.7.6 Guards

A guard sequence Gsisasequenceof guardsG 1; ...; G k,andRep(Gs)=[Rep(G 1), ..., Rep(GKk)].
If the guard sequenceis empty, then Rep(Gs) =[] .

A guard G is a non-empty sequence of guardtests& _1, ..., & _k,andRep(G) =[Rep(&_1), ...,
Rep(G& _Kk)].

A guard test Gt is one of the following:

« |If Gtisanatomic literal L, then Rep(Gt) = Rep(L).

e |If Gt is a bitstring constructor <<G& _1:Size 1/TSL_1, Ce, & _k:Size k/ITSL_k>>,
where each Size i is a guard test and each TSL_ i is a type specificer list, then
Rep(Gt)={bi n, LINE, [{bi n_el ement, LINE, Rep(& _1), Rep(Size_1),Rep(TSL_1)}, ...,
{bin_elenent, LINE, Rep(&G _k), Rep(Si ze_k), Rep(TSL_k) }]}. For Rep(TSL), see above. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

 IfGtisaconsskeleton[&G _h | G _t],then Rep(Gt) ={cons, LI NE, Rep(& _h), Rep(G _t)}.

e [IfGtisafunctioncal A& _1, ..., & _k),whereAisanatom, thenRep(Gt)={cal |, LI NE, Rep(A),
[Rep(G_1), ..., Rep(G& _Kk)1}.
e« IfGtisafunctioncal A mA(&G_1, ..., & _Kk),where A mistheatomer| ang and Aisan atom or an

operator, then Rep(Gt) = {cal I , LI NE, {renote, LI NE, Rep(A_n), Rep(A },[Rep(G _1), ...,
Rep(G& _k)1}.

o« If Gtisamapcreation#{ A 1, ..., A k},whereeachA i isanassociaionG _i _1 => G _i_2or
G_i_1:=G_i_2,thenRep(Gt)={map, LI NE, [Rep(A_1), ..., Rep(A_K)]}.ForRep(A), see
above.

e IfGtisamapupdate& O#{A 1, ..., A k},whereeachA i isanassociation& i 1 => &G i 2
ooG& i 1:=G_i_2,thenRep(Gt)={map, LINE, Rep(G _0),[Rep(A 1), ..., Rep(AKk)]}.

For Rep(A), see above.

o IfGtisnil, [],then Rep(Gt) ={ni |, LI NE}.

e |fGtisanoperatorguardtess & 1 Op G _2, where Qp isabinary operator other than match operator =, then
Rep(Gt) ={ op, LI NE, Op, Rep(& _1), Rep(G _2)}.

e |If Gt is an operator guard test Op & _0, where Op is a unary operator, then Rep(Gt) =
{op, LINE, Op, Rep(G& _0)}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

1.7 The Abstract Format

If Gtisaparenthesized guardtest (G _0), then Rep(Gt) = Rep(G _0) , that is, parenthesized guard tests
cannot be distinguished from their bodies.

If Gt is a record creation #Nane{Field 1=G 1, B Field k=G _k},
where each Field_i is an atom or _, then Rep(Gt) =
{record, LI NE, Nane, [{record _field, LINE Rep(Field 1), Rep(G _1)}, ce
{record field,LINE Rep(Field k), Rep(& _Kk)}]1}.

If Gt is a record field access G _O#Name. Fi el d, where Field is an atom, then Rep(Gt)
{record_field,LINE Rp(&_0), Nane, Rep(Field)}.

If Gt is a record field index #Nane.Field, where Field is an aom, then Rep(Gt)
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

If Gtisatuple skeleton{& _1, ..., G _k}, then Rep(Gt) ={tuple, LINE [Rep(&_1), ...,
Rep(& _k)1}.

If Gt isavariable pattern V, then Rep(Gt) ={ var, LI NE, A}, where A is an atom with a printhame consisting
of the same charactersas V.

Notice that every guard test has the same source form as some expression, and is represented in the same way as the
corresponding expression.

1.7.7 Types

If T is an annotated type A :: T_0, where A is a variable, then Rep(T) = {ann_t ype, LI NE,
[Rep(A), Rep(T_0)]}.

If T isan atom or integer litera L, then Rep(T) = Rep(L).

If T is a hitstring type << : M _: *N>>, where M and N are singleton integer types, then Rep(T) =
{type, LI NE, bi nary, [Rep(M, Rep(N1}.

If Tistheempty listtype[],then Rep(T) ={type, Line,nil,[]}.

If Tisafuntypef un(),thenRep(T)={type, LINE, 'fun',[]1}.

If T is a fun type fun((...) -> T 0), then Rep(T) = {type,LINE, 'fun',
[{type, LI NE, any}, Rep(T_0)]}.

If Tisafuntypef un(Ft),whereFt isafunction type, then Rep(T) = Rep(Ft) . For Rep(Ft), see below.

If T is an integer range type L .. H, where L and H are singleton integer types, then Rep(T) =
{type, LI NE, range, [Rep(L), Rep(H1}.

If Tisamaptypemap(),then Rep(T) ={t ype, LI NE, map, any}.

If Tisamap type #{A 1, ..., Ak}, where each A i is an association type, then Rep(T) =
{type, LI NE, map, [Rep(A_1), ..., Rep(A_K)]}.ForRep(A), seebelow.

If TisanoperatortypeT_1 Op T_2, where Op isahinary operator (thisis an occurrence of an expression that
can be evaluated to an integer at compiletime), then Rep(T) ={op, LI NE, Op, Rep(T_1), Rep(T_2)}.

If T isan operator typeOp T_0, where Op isaunary operator (thisisan occurrence of an expression that can be
evaluated to an integer at compile time), then Rep(T) ={ op, LI NE, Op, Rep(T_0) }.

IfTis(T_0),thenRep(T)=Rep(T_0),thatis, parenthesized types cannot be distinguished from their bodies.

If T is a predefined (or built-in) type N(T_1, T k), then Rep(T) = {type, LI NE, N,
[Rep(T_1), ..., Rep(T_Kk)]}.

If T isarecord type #Nane{F_1, ..., F_k}, whereeach F_i is arecord field type, then Rep(T) =
{type, LI NE record, [Rep(Nane), Rep(F_1), ..., Rep(F_k)]}.ForRep(F), seebelow.

If TisaremotetypeM N(T_1, ..., T_k),thenRep(T)={renote_type, LINE, [Rep(M, Rep(N),
[Rep(T_1), ..., Rep(T_Kk)]]1}.

If Tisatupletypet upl e(),then Rep(T) ={t ype, LI NE, t upl e, any}.

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 tty - ACommand-Line Interface

e IfTisatupletype{T_1, ..., T_k},then Rep(T) ={type, LINE tuple, [Rep(T_1), ...,
Rep(T_k)1}.

e IfTisatypeunionT 1 | ... | T_k,then Rep(T) ={type, LINE, union,[Rep(T_1), ...,
Rep(T_k)1}.

« If TisatypevariableV, then Rep(T) ={ var, LI NE, A}, where Aisan atom with a printname consisting of the
same characters as V. A type variable is any variable except underscore ().

e If T is a user-defined type N(T_1, T k), then Rep(T) = {user _type, LI NE N,
[Rep(T_1), ..., Rep(T_Kk)1}.

Function Types

A function type Ft is one of the following:

* IfFtisaconstrainedfunctiontypeFt _1 when Fc,whereFt _1 isafunctiontypeand Fc isafunction constraint,
then Rep(T) ={t ype, LI NE, bounded_f un, [Rep(Ft _1), Rep(Fc)]} . For Rep(Fc), see below.

e If Ftisafunctiontype (T 1, ..., T.n) -> T 0, whereeach T_ i is a type, then Rep(Ft) =
{type, LINE, ' fun',[{type, LINE, product,[Rep(T_1), ..., Rep(T_n)]},Rep(T_0)]}.
Function Constraints

A function constraint Fc is a non-empty sequence of constraints C 1, C k, and Rep(Fc) =
[Rep(C 1), ..., Rep(CKk)].

e [IfCisacongtraintV :: T,whereVisatypevariableand T isatype, then Rep(C) =
{type, LINE, constraint,[{atom LINE, is_subtype},[Rep(V),Rep(T)]1}.

Association Types

« If A is an association type K => V, where K and V are types, then Rep(A) =
{type, LI NE, map_fi el d_assoc, [Rep(K), Rep(V)]}.
e If A is an association type K 1= V, where K and V are types, then Rep(A) =

{type, LI NE, map_fiel d_exact, [Rep(K), Rep(V)]1}.

Record Field Types

 IfFisarecordfieldtypeNane :: Type,whereType isatype, then Rep(F) =
{type,LINE, field_type, [Rep(Nane), Rep(Type)]}.

1.7.8 The Abstract Format after Preprocessing

The compilation option debug_i nf o can be specified to the compiler to have the abstract code stored in the
abstract _code chunk inthe Beam file (for debugging purposes).

As from Erlang/OTP R9C, the abstract code chunk contains {raw _abstract v1, Abstract Code},
where Abst r act Code isthe abstract code as described in this section.

In OTP releases before RIC, the abstract code after some more processing was stored in the Beam file. The first
element of the tuple would be either abst ract _v1 (in OTPR7B) or abst r act _v2 (in OTP R8B).

1.8 tty - A Command-Line Interface

tty isasimple command-line interface program where keystrokes are collected and interpreted. Completed lines
are sent to the shell for interpretation. A simple history mechanism saves previous lines, which can be edited before
sending them to the shell. t t y is started when Erlang is started with the following command:

erl

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

1.8 tty - ACommand-Line Interface

t t y operatesin one of two modes:

* Normal mode, in which text lines can be edited and sent to the shell.
* Shell break mode, which allows the user to kill the current shell, start multiple shells, and so on.

1.8.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the Emacs line-editing
commands are supported. The following is acomplete list of the supported line-editing commands.

Typographic conventions:

e C a meanspressing the Ctrl key and the letter a simultaneously.

* M means pressing the Esc key and the letter f in sequence.

e Hone and End represent the keys with the same hame on the keyboard.
« Left andRi ght represent the corresponding arrow keys.

Key Sequence Function

Home Beginning of line

C-a Beginning of line

C-b Backward character

C-Left Backward word

M-b Backward word

Cd Delete character

M-d Delete word

End End of line

C-e End of line

C Forward character

C-Right Forward word

M-f Forward word

C-g Enter shell break mode

C-k Kill line

C-u Backward kill line

CH Redraw line

C-n Fetch next line from the history buffer
C-p Fetch previous line from the history buffer

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

C-t Transpose characters
C-w Backward kill word
C-y Insert previously killed text

Table 8.1: tty Text Editing

1.8.2 Shell Break Mode

In this mode the following can be done:

» Kill or suspend the current shell
« Connect to a suspended shell
e Start anew shell

1.9 How to Implement a Driver

This section was written along time ago. Most of it is still valid, as it explains important concepts, but this was
written for an older driver interface so the examples do not work anymore. The reader is encouraged to read the
erl _driver anddri ver_entry documentation also.

1.9.1 Introduction

This section describes how to build your own driver for Erlang.

A driver in Erlang is a library written in C, which is linked to the Erlang emulator and called from Erlang. Drivers
can be used when C is more suitable than Erlang, to speed up things, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on Windows), or statically loaded, linked
with the emulator when it is compiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this section.

When adriver isloaded it is executed in the context of the emulator, shares the same memory and the same thread.
This meansthat all operationsin the driver must be non-blocking, and that any crash in the driver brings the whole
emulator down. In short, be careful.

1.9.2 Sample Driver

This section describes a simple driver for accessing a postgres database using the libpq C client library. Postgresis
used because it is free and open source. For information on postgres, see www.postgr es.or g.

The driver is synchronous, it uses the synchronous calls of the client library. Thisis only for simplicity, but not good,
asit halts the emulator while waiting for the database. Thisisimproved below with an asynchronous sample driver.

The code is straightforward: all communication between Erlang and the driver isdonewithport _control / 3, and
the driver returns data back using ther buf .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

href

1.9 How to Implement a Driver

An Erlang driver only exports one function: the driver entry function. Thisis defined with amacro, DRI VER_| NI T,
which returns a pointer to aC st r uct containing the entry points that are called from the emulator. The st r uct

defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

The st art entry is called when the driver is opened as a port with open_port/ 2. Here we allocate memory
for a user data structure. This user data is passed every time the emulator calls us. First we store the driver
handle, as it is needed in later calls. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return alocated driver binaries, by setting flag PORT_CONTROL_FLAG Bl NARY, calling
set _port _control _fl ags.(Thisisbecausewe do not know if our datawill fitintheresult buffer of cont r ol ,
which has a default size, 64 bytes, set up by the emulator.)

Anentry i ni t iscalled when the driver is loaded. However, we do not use this, as it is executed only once, and we
want to have the possibility of several instances of the driver.

Thest op entry is called when the port is closed.

The control entry iscaled from the emulator when the Erlang code calls port _cont r ol / 3, to do the actual
work. We have defined a simple set of commands. connect to log in to the database, di sconnect to log out,
and sel ect to send a SQL-query and get the result. All results are returned through r buf . The library ei in
erl _i nterface isusedtoencodedatain binary term format. Theresult isreturned to the emulator as binary terms,
sobinary_t o_termiscaledin Erlang to convert the result to term form.

Thecodeisavailablein pg_sync. ¢ inthesanpl e directory of ert s.

The driver entry contains the functions that will be called by the emulator. In this example, only st art , st op, and
cont r ol areprovided:

/* Driver interface declarations */

static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static ErlDrvEntry pq driver entry = {

NULL, /* init */

start,

stop,

NULL, /* output */

NULL, /* ready input */
NULL, /* ready output */
"pg_sync", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

}i
We have a structure to store state needed by the driver, in this case we only need to keep the database connection:
typedef struct our data s {
PGconn* conn;

} our data t;

The control codes that we have defined are as follows:

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

/* Keep the following definitions in alignment with the
* defines in erl pq sync.erl

*/
#define DRV_CONNECT 'C'
#define DRV_DISCONNECT ‘D'
#define DRV_SELECT 'S’

Thisreturnsthedriver structure. Themacro DRI VER | NI T definesthe only exported function. All the other functions
are static, and will not be exported from the library.

/* INITIALIZATION AFTER LOADING */

/*
* This is the init function called after this driver has been loaded.
* It must *not* be declared static. Must return the address to
* the driver entry.
*/

DRIVER INIT(pq drv)
{

}

return &pq driver entry;

Heresomeinitializationisdone, st ar t iscalledfromopen_port . Thedatawill be passedtocont r ol andst op.

/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)

{
our data t* data;
data = (our data t*)driver alloc(sizeof(our data t));
data->conn = NULL;
set port control flags(port, PORT CONTROL FLAG BINARY);
return (ErlDrvData)data;

}

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)
static int do disconnect(our data t* data, ei x buff* x);

static void stop(ErlDrvData drv_data)

{
our data t* data = (our data t*)drv data;
do disconnect(data, NULL);
driver free(data);

}

We use the binary format only to return data to the emulator; input data is a string parameter for connect and
sel ect . Thereturned data consists of Erlang terms.

The functions get _s and ei _x_t o_new_bi nary are utilities that are used to make the code shorter. get _s
duplicates the string and zero-terminates it, as the postgres client library wantsthat. ei _x_t o_new_bi nary takes
anei _x_buf f buffer, alocates a binary, and copies the data there. This binary is returned in * r buf . (Notice that
this binary is freed by the emulator, not by us.)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

1.9 How to Implement a Driver

static char* get s(const char* buf, int len);
static int do connect(const char *s, our data t* data, ei x buff* x);
static int do select(const char* s, our data t* data, ei x buff* x);

/* As we are operating in binary mode, the return value from control
* is irrelevant, as long as it is not negative.
*/
static int control(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf, int rlen)
{
int r;
ei x buff x;
our _data t* data = (our data t*)drv_data;
char* s = get s(buf, len);
ei x new with version(&x);
switch (command) {
case DRV_CONNECT: r = do_connect(s, data, &x); break;
case DRV _DISCONNECT: r = do_disconnect(data, &x); break;
case DRV _SELECT: r = do_select(s, data, &x); break;
default: r=-1; break;
rbuf = (char)ei x to new binary(&x);
ei x free(&x);
driver free(s);
return r;
}

do_connect iswherewe log in to the database. If the connection was successful, we store the connection handle
in the driver data, and return ' ok' . Otherwise, we return the error message from postgres and store NULL in the
driver data.

static int do connect(const char *s, our data t* data, ei x buff* x)

{
PGconn* conn = PQconnectdb(s);
if (PQstatus(conn) != CONNECTION_OK) {
encode error(x, conn);
PQfinish(conn);
conn = NULL;
} else {
encode ok(x);
b
data->conn = conn;
return 0;
)

If we are connected (and if the connection handle is not NULL), we log out from the database. We need to check if we
should encode an' ok' , aswe can get here from function st op, which does not return data to the emulator:

static int do disconnect(our data t* data, ei x buff* x)

{

if (data->conn
return 0;
PQfinish(data->conn);
data->conn NULL;
if (x !'= NULL)
encode ok(x);
return 0;

NULL)

}

We execute a query and encode the result. Encoding is done in another C module, pg_encode. ¢, which is aso
provided as sample code.

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

static int do select(const char* s, our data t* data, ei x buff* x)

PGresult* res = PQexec(data->conn, s);
encode result(x, res, data->conn);
PQclear(res);
return 0;

}

Here we check the result from postgres. If it is data, we encode it as lists of lists with column data. Everything from
postgres is C strings, sowe use ei _x_encode_st ri ng to send the result as strings to Erlang. (The head of the
list contains the column names.)

void encode result(ei x buff* x, PGresult* res, PGconn* conn)
{
int row, n rows, col, n cols;
switch (PQresultStatus(res)) {
case PGRES_TUPLES_OK:
n_rows = PQntuples(res);
n _cols = PQnfields(res);
ei x encode tuple header(x, 2);
encode ok(x);
ei x encode list header(x, n_rows+l);
ei x encode list header(x, n _cols);
for (col = 0; col < n _cols; ++col) {
ei x encode string(x, PQfname(res, col));
}

ei x encode empty list(x);
for (row = 0; row < n_rows; ++row) {
ei x encode list header(x, n _cols);
for (col = 0; col < n _cols; ++col) {
ei x encode string(x, PQgetvalue(res, row, col));
}

ei x encode empty list(x);

}
ei x encode empty list(x);
break;

case PGRES_COMMAND_OK:
ei x encode tuple header(x, 2);
encode ok(x);
ei x encode string(x, PQcmdTuples(res));
break;

default:
encode error(x, conn);
break;

1.9.3 Compiling and Linking the Sample Driver

The driver isto be compiled and linked to a shared library (DLL on Windows). With gcc, thisis done with link flags
-sharedand-f pi c. Asweusetheei library, we should includeit too. There are several versions of ei , compiled
for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples, the obj directory is
used for theei library, meaning that we use the non-debug, single-threaded version.

1.9.4 Calling a Driver as a Port in Erlang

Beforeadriver can be called from Erlang, it must beloaded and opened. Loading isdoneusingtheer | _ddl | module
(theer! _ddl | driver that loads dynamic driver is actually adriver itself). If loading is successfull, the port can be
opened with open_port/ 2. The port name must match the name of the shared library and the name in the driver
entry structure.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.9 How to Implement a Driver

When the port has been opened, the driver can be called. In the pg_sync example, we do not have any data from
the port, only the return value fromthe port _control .

The following code is the Erlang part of the synchronous postgres driver, pg_sync. erl :

-module(pg_sync).

-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->

case erl ddll:load driver(".", "pg sync") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit({error, E})

end,

Port = open port({spawn, ?MODULE}, [1),

case binary to term(port control(Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error

end.

disconnect(Port) ->
R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
port close(Port),
R.

select(Port, Query) ->
binary to term(port_control(Port, ?DRV_SELECT, Query)).

The APl issimple;

* connect/ 1 loadsthedriver, opensit, and logs on to the database, returning the Erlang port if successful.
« sel ect/ 2 sendsaquery to the driver and returns the result.

e disconnect/ 1 closesthe database connection and the driver. (However, it does not unload it.)

The connection string is to be a connection string for postgres.

Thedriverisloaded wither| _ddl | : | oad_dri ver/ 2. If thisissuccessful, or if itis aready loaded, it is opened.
Thiswill call thest art function in the driver.

Weusetheport control / 3 functionforal calsintothedriver. Theresult from thedriver isreturned immediately
and converted to terms by calling bi nary_t o_t er ni 1. (Wetrust that the terms returned from the driver are well-
formed, otherwisethe bi nary_t o_t er mcalls could be containedinacat ch.)

1.9.5 Sample Asynchronous Driver

Sometimes database queries can take along time to complete, in our pg_sync driver, the emulator halts while the
driver isdoing itsjob. Thisisoften not acceptable, as no other Erlang process gets a chance to do anything. To improve
on our postgres driver, we re-implement it using the asynchronous callsin LibPQ.

The asynchronous version of the driver isin the samplefilespg_async. ¢ and pg_asyng. er| .

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

/* Driver interface declarations */

static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static void ready io(ErlDrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pq driver entry = {

NULL, /* init */

start,

stop,

NULL, /* output */

ready io, /* ready input */
ready io, /* ready output */
"pg_async", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

};

typedef struct our data t {
PGconn* conn;
ErlDrvPort port;
int socket;
int connecting;

} our data t;

Some things have changed from pg_sync.c: we use the entry ready _io for ready_input and
r eady_out put, which is caled from the emulator only when there is input to be read from the socket. (Actualy,
the socket isused inasel ect function inside the emulator, and when the socket is signaled, indicating there is data
toread, ther eady_i nput entry iscalled. More about this below.)

Our driver datais also extended, we keep track of the socket used for communication with postgres, and also the port,
which is needed when we send datato the port with dr i ver _out put . Wehaveaflagconnect i ng totell whether
the driver is waiting for a connection or waiting for the result of a query. (Thisis needed, astheentry r eady _i o is
called both when connecting and when there is a query result.)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 61

1.9 How to Implement a Driver

static int do connect(const char *s, our data t* data)

{
PGconn* conn = PQconnectStart(s);
if (PQstatus(conn) == CONNECTION BAD) {
ei x buff x;
ei x new with version(&x);
encode error(&x, conn);
PQfinish(conn);
conn = NULL;
driver output(data->port, x.buff, x.index);
ei x_free(&x);
}
PQconnectPoll(conn);
int socket = PQsocket(conn);
data->socket = socket;
driver select(data->port, (ErlDrvEvent)socket, DO READ, 1);
driver select(data->port, (ErlDrvEvent)socket, DO WRITE, 1);
data->conn = conn;
data->connecting = 1;
return 0;
)

Theconnect function looks a bit different too. We connect using the asynchronous PQconnect St art function.
After the connection is started, we retrieve the socket for the connection with PQsocket . This socket isused with the
driver _sel ect functionto wait for connection. When the socket is ready for input or for output, ther eady_i o
function is called.

Noticethat we only returndata(withdr i ver _out put) if thereisan error here, otherwise we wait for the connection
to be completed, in which case our r eady_i o function is called.

static int do select(const char* s, our data t* data)
{
data->connecting = 0;
PGconn* conn = data->conn;
/* if there's an error return it now */
if (PQsendQuery(conn, s) == 0) {
ei x_buff x;
ei x _new with version(&x);
encode _error(&x, conn);
driver output(data->port, x.buff, x.index);
ei x_free(&x);
}
/* else wait for ready output to get results */
return 0;

}

Thedo_sel ect function initiates a select, and returns if there is no immediate error. The result is returned when
ready_ioiscalled.

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

static void ready io(ErlDrvData drv_data, ErlDrvEvent event)

{

}

PGresult* res = NULL;
our _data t* data = (our data t*)drv_data;
PGconn* conn = data->conn;
ei x buff x;
ei x new with version(&x);
if (data->connecting) {
ConnStatusType status;
PQconnectPoll(conn);
status = PQstatus(conn);
if (status == CONNECTION OK)
encode ok (&x);
else if (status == CONNECTION BAD)
encode _error(&x, conn);
} else {
PQconsumeInput(conn);
if (PQisBusy(conn))
return;
res = PQgetResult(conn);
encode result(&x, res, conn);
PQclear(res);
for (;;) {
res = PQgetResult(conn);
if (res == NULL)
break;
PQclear(res);
}
)
if (x.index > 1) {
driver output(data->port, x.buff, x.index);
if (data->connecting)

driver select(data->port, (ErlDrvEvent)data->socket, DO WRITE, 0);

ei x_free(&x);

Ther eady_i o function is called when the socket we got from postgres is ready for input or output. Here we first
check if we are connecting to the database. In that case, we check connection status and return OK if the connection is
successful, or error if it isnot. If the connection is not yet established, we simply return; r eady i o iscalled again.

If we have a result from a connect, indicated by having data in the x buffer, we no longer need to select on output

(r eady_out put), soweremovethisby calingdri ver _sel ect.

If we are not connecting, we wait for results from a PQsendQuer y, so we get the result and return it. The encoding
is done with the same functions asin the earlier example.

Error handling isto be added here, for example, checking that the socket is still open, but thisisonly asimple example.

The Erlang part of the asynchronous driver consists of the sasmplefilepg_async. erl .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

1.9 How to Implement a Driver

-module(pg _async).

-define(DRV_CONNECT, $C).
-define(DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->
case erl ddll:load driver(".", "pg_async") of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
Port = open port({spawn, ?MODULE}, [binaryl),
port control(Port, ?DRV_CONNECT, ConnectStr),
case return port data(Port) of
ok ->
{ok, Port};
Error ->
Error
end.

disconnect(Port) ->
port control(Port, ?DRV_DISCONNECT, ""),
R = return port data(Port),
port close(Port),
R.

select(Port, Query) ->
port control(Port, ?DRV_SELECT, Query),
return_port data(Port).

return_port data(Port) ->
receive
{Port, {data, Data}} ->
binary to term(Data)
end.

The Erlang code is dlightly different, as we do not return the result synchronously from port _cont r ol , instead we
getitfromdri ver _out put asdatainthemessagequeue. Thefunctionr et ur n_port _dat a abovereceivesdata
from the port. Asthe dataisin binary format, we use bi nary_t o_t er m 1 to convert it to an Erlang term. Notice
that the driver isopenedin binary mode (open_port/ 2 iscaledwithoption[bi nar y]). Thismeansthat data sent
from the driver to the emulator is sent as binaries. Without option bi nar y, they would have been lists of integers.

1.9.6 An Asynchronous Driver Using driver_async

As afina example we demonstrate the use of dri ver _async. We aso use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We use the next _per nut at i on agorithm to get
the next permutation of alist of integers. For large lists (> 100,000 elements), this takes some time, so we perform
this as an asynchronous task.

The asynchronous API for drivers is complicated. First, the work must be prepared. In the example, thisis done in
out put . We could have used cont r ol , but we want some variation in the examples. In our driver, we allocate
a structure that contains anything that is needed for the asynchronous task to do the work. Thisis done in the main
emulator thread. Then the asynchronousfunction iscalled from adriver thread, separate from the main emulator thread.
Noticethat the driver functionsare not re-entrant, so they are not to be used. Finally, after the functioniscompleted, the
driver callback r eady_async is called from the main emulator thread, thisis where we return the result to Erlang.
(We cannot return the result from within the asynchronous function, as we cannot call the driver functions.)

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

The following code is from the sample file next _per m cc. The driver entry looks like before, but aso contains
the callback r eady_async.

static ErlDrvEntry next perm driver entry = {

NULL, /* init */

start,

NULL, /* stop */

output,

NULL, /* ready input */
NULL, /* ready output */
"next_perm", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */

NULL, /* control */
NULL, /* timeout */
NULL, /* outputv */
ready async,

NULL, /* flush */

NULL, /* call */

NULL /* event */

}

Theout put function allocates the work area of the asynchronous function. Aswe use C++, we use a struct, and stuff
the datain it. We must copy the original data, it is not valid after we have returned from the out put function, and
the do_per mfunction is called later, and from another thread. We return no data here, instead it is sent later from
ther eady_async calback.

Theasync_dat a is passed to the do_per mfunction. We do not useaasync_f r ee function (the last argument
todriver_async),itisonly used if thetask is cancelled programmatically.

struct our_async data {
bool prev;
vector<int> data;
our_async _data(ErlDrvPort p, int command, const char* buf, int len);

}i

our_async _data::our_async data(ErlDrvPort p, int command,
const char* buf, int 1len)
: prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))
{
)

static void do perm(void* async_data);

static void output(ErlDrvData drv_data, char *buf, int len)

{
if (*buf < 1 || *buf > 2) return;
ErlDrvPort port = reinterpret cast<kErlDrvPort>(drv_data);
void* async data = new our _async data(port, *buf, buf+l, len);
driver async(port, NULL, do perm, async data, do free);

}

Inthedo_per mwe do the work, operating on the structure that was allocated in out put .

static void do perm(void* async data)

{
our_async _data* d = reinterpret cast<our async data*>(async data);
if (d->prev)
prev_permutation(d->data.begin(), d->data.end());
else
next permutation(d->data.begin(), d->data.end());
}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

1.9 How to Implement a Driver

In the r eady_async function the output is sent back to the emulator. We use the driver term format instead
of ei . This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
bi nary_to_terni 1. Inthe simple example this works well, and we do not need to use ei to handle the binary
term format.

When the datais returned, we deallocate our data

static void ready async(ErlDrvData drv_data, ErlDrvThreadData async data)
{
ErlDrvPort port = reinterpret cast<ErlDrvPort>(drv_data);
our_async data* d = reinterpret cast<our async data*>(async data);
int n = d->data.size(), result n = n*2 + 3;
ErlDrvTermData *result = new ErlDrvTermData[result n], *rp = result;
for (vector<int>::iterator i = d->data.begin();
i !'= d->data.end(); ++i) {
*rp++ = ERL_DRV_INT;
*rp++ *i;

}
*rp++ = ERL DRV NIL;

*rp++ = ERL DRV_LIST;

*rp++ n+l;

driver output term(port, result, result n);
delete[] result;

delete d;

}

Thisdriver is called like the others from Erlang. However, aswe use dri ver _out put _t er m there is no need to
cal bi nary_t o_t er m The Erlang codeisin the samplefilenext _perm erl .

The input is changed into alist of integers and sent to the driver.

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 Inet Configuration

-module(next _perm).
-export([next perm/1l, prev_perm/1, load/0, all perm/1]).

load() ->
case whereis(next perm) of
undefined ->

case erl ddll:load driver(".", "next perm") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit(E)

end,

Port = open port({spawn, "next perm"}, []),

register(next perm, Port);

->
ok

end.

list to integer binaries(L) ->
[<<I:32/integer-native>> || I <- L].

next perm(L) ->
next perm(L, 1).

prev_perm(L) ->
next perm(L, 2).

next perm(L, Nxt) ->
load(),
B = list to integer binaries(L)
port control(next perm, Nxt, B)
receive
Result ->
Result

’
’

end.

all perm(L) ->
New = prev_perm(L),
all perm(New, L, [New]).

all perm(L, L, Acc) ->
Acc;
all perm(L, Orig, Acc) ->
New = prev_perm(L),
all perm(New, Orig, [New | Accl).

1.10 Inet Configuration
1.10.1 Introduction

This section describes how the Erlang runtime system is configured for IP communication. It also explains how you
can configure it for your needs by a configuration file. The information is primarily intended for users with special
configuration needs or problems. There is normally no need for specific settings for Erlang to function properly on
acorrectly IP-configured platform.

When Erlang starts up it reads the Kernel variable i net r c, which, if defined, is to specify the location and name
of auser configuration file. Example:

% erl -kernel inetrc '"./cfg files/erl inetrc"'

Noticethat theuse of an . i net r c¢ file, which was supported in earlier Erlang/OTP versions, is now obsolete.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

1.10 Inet Configuration

A second way to specify the configuration file is to set environment variable ERL_|I NETRC to the full name of the
file. Example (bash):

% export ERL_INETRC=./cfg_files/erl_inetrc

Notice that the Kernel variablei net r ¢ overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang uses default configuration settings and a native lookup method that works correctly under most circumstances.
Erlang reads no information from system i net configuration files (such as / et ¢/ host. conf and /etc/
nsswi t ch. conf) inthese modes, except for/ et ¢/ r esol v. conf and/ et ¢/ host s that isread and monitored
for changes on Unix platforms for the internal DNSclienti net _res(3).

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere and reads system
i net configuration filesfor thisinformation. Any hosts and resolver information found is also recorded, but not used
aslong as Erlang is configured for native lookups. The information becomes useful if the lookup method is changed
to'file' or'dns', seebeow.

Native lookup (system calls) is always the default resolver method. Thisistruefor all platforms, except VxWorks and
OSE Deltawhere' fil e' or' dns' isused (inthat priority order).

On Windows platforms, Erlang searches the system registry rather than looks for configuration files when started in
long name distributed mode.

1.10.2 Configuration Data
Erlang records the following datain alocal databaseif found in systemi net configuration files (or system registry):

* Hostnames and host addresses

e Domain name

¢ Nameservers

* Search domains

e Lookup method

This data can also be specified explicitly in the user configuration file. Thisfile is to contain lines of configuration
parameters (each terminated with a full stop). Some parameters add data to the configuration (such as host and
nameserver), others overwrite any previous settings (such as domain and lookup). The user configuration fileisalways

examined last in the configuration process, making it possible for the user to override any default values or previously
made settings. Call i net : get _rc() toview the state of thei net configuration database.

The valid configuration parameters are as follows:
{file, Format, File}.
Format = atom()
File = string()
Specify a system file that Erlang is to read configuration data from. For mat tells the parser how the file is to
be interpreted:
e resol v (Unix resolv.conf)
* host_conf_freebsd (FreeBSD host.conf)
« host _conf _bsdos (BSDOS host.conf)
e host _conf _|i nux (Linux host.conf)
e nsswitch_conf (Unix nsswitch.conf)
e host s (Unix hosts)

Fi | e isto specify the filename with full path.

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 Inet Configuration

{resolv_conf, File}.
File = string()

Specify a system file that Erlang is to read resolver configuration from for the internal DNS client
i net _res(3), and monitor for changes, even if it does not exist. The path must be absolute.

This can override the configuration parameters naneser ver and sear ch depending on the contents of the
specified file. They can also change any time in the future reflecting the file contents.

If the file is specified as an empty string " ", no file is read or monitored in the future. This emulates the old
behavior of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified, it defaults to /et c/resol v. conf unless environment variable
ERL_I NET_ETC_DI Ris set, which defines the directory for thisfile to some maybe other than/ et c.

{hosts _file, File}.
File = string()

Specify a system file that Erlang is to read resolver configuration from for the internal hosts file resolver, and
monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after al added with {file, hosts, File} aboveor{host, 1P,
Al i ases} below when lookup optionf i | e isused.

If the file is specified as an empty string " ", no file is read or monitored in the future. This emulates the old
behavior of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified, it defaults to /etc/hosts unless environment variable
ERL_I NET_ETC_DI Ris set, which defines the directory for thisfile to some maybe other than/ et c.

{registry, Type}.

Type = atom()

Specify a system registry that Erlang is to read configuration data from. wi n32 isthe only valid option.
{host, I P, Aliases}.

I P = tuple()

Aliases = [string()]

Add host entry to the hosts table.
{domai n, Donai n}.

Domain = string()

Set domain name.
{naneserver, IP [,Port]}.

I P = tuple()

Port = integer()

Add address (and port, if other than default) of the primary nameserver to usefori net _res(3).
{al t _nameserver, IP [,Port]}.

I P = tuple()

Port = integer()

Add address (and port, if other than default) of the secondary nameserver fori net _res(3).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

1.10 Inet Configuration

{search, Domai ns}.
Domains = [string()]
Add search domainsfori net _res(3).
{I ookup, Methods}.
Met hods = [atom()]
Specify lookup methods and in which order to try them. The valid methods are as follows:

 native (usesystem cals)
e fil e (usehost dataretrieved from system configuration files and/or the user configuration file)
e dns (usethe Erlang DNSclienti net _r es(3) for nameserver queries)

The lookup method st ri ng tries to parse the hosthame as an 1Pv4 or IPv6 string and return the resulting 1P
address. Itisautomatically tried first whennat i ve isnot inthe Met hods list. To skip it in this case, the pseudo
lookup method nost r i ng can be inserted anywhere in the Met hods list.

{cache_si ze, Size}.

Size = integer()

Set the resolver cache size. Defaults to 100 DNS records.
{cache_refresh, Tine}.

Time = integer()

Set how often (in milliseconds) the resolver cachefori net _r es(3) isrefreshed (that is, expired DNS records
are deleted). Defaultsto 1 hour.

{tinmeout, Tine}.

Time = integer()

Set thetimeto wait until retry (in milliseconds) for DNS queriesmadeby i net _r es(3) . Defaultsto 2 seconds.
{retry, N}.

N = integer()

Set the number of DNS queriesi net _r es(3) will try before giving up. Defaultsto 3.
{inet6, Bool}.

Bool = true | false

Tellsthe DNSclienti net _r es(3) tolook up IPv6 addresses. Defaultsto f al se.
{usevc, Bool}.

Bool = true | false

Tellsthe DNSclienti net _r es(3) touse TCP (Virtual Circuit) instead of UDP. Defaultsto f al se.
{edns, Version}.

Version = false | O

Sets the EDNS version that i net _res(3) will use. The only allowed version is zero. Defaults to f al se,
which means not to use EDNS.

{udp_payl oad_si ze, Size}.
N = integer()

Sets the allowed UDP payload size i net _r es(3) will advertise in EDNS queries. Also sets the limit when
the DNS query will be deemed too large for UDP forcing a TCP query instead; this is not entirely correct, as

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

the advertised UDP payload size of the individual nameserver iswhat is to be used, but this simple strategy will
do until amore intelligent (probing, caching) algorithm needs to be implemented. Default to 1280, which stems
from the standard Ethernet MTU size.

{udp, Mbdul e}.

Modul e = atom()

Tell Erlang to use another primitive UDP modulethani net _udp.
{tcp, Modul e}.

Modul e = atom()

Tell Erlang to use another primitive TCP modulethani net _t cp.
cl ear _hosts.

Clear the hoststable.
cl ear _ns.

Clear the list of recorded nameservers (primary and secondary).
cl ear _search.

Clear the list of search domains.

1.10.3 User Configuration Example

Assume that a user does not want Erlang to use the native lookup method, but wants Erlang to read all information
necessary from start and use that for resolving names and addresses. If lookup fails, Erlang is to request the data from
anameserver (using the Erlang DNS client, set to use EDNS allowing larger responses). The resolver configuration
is updated when its configuration file changes. Also, DNS records are never to be cached. The user configuration file
(inthisexamplenamed er | _i net r c, stored indirectory . / cf g_f i | es) can then look as follows (Unix):

-- ERLANG INET CONFIGURATION FILE --

read the hosts file

{file, hosts, "/etc/hosts"}.

add a particular host

host, {134,138,177,105}, ["finwe"]}.

%% do not monitor the hosts file

{hosts file, ""}.

%% read and monitor nameserver config from here
{resolv_conf, "/usr/local/etc/resolv.conf"}.
%% enable EDNS

{edns,0}.

%% disable caching

{cache size, 0}.

%% specify lookup method

{lookup, [file, dns]}.

o o

)
]
)

]

o°

~a o0

And Erlang can, for example, be started as follows:

% erl -sname my _node -kernel inetrc '"./cfg files/erl inetrc"'

1.11 External Term Format
1.11.1 Introduction

The external term format is mainly used in the distribution mechanism of Erlang.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

1.11 External Term Format

As Erlang has a fixed number of types, there is no need for a programmer to define a specification for the external
format used within some application. All Erlang terms have an external representation and the interpretation of the
different terms s application-specific.

InErlangtheBIF er| ang: term to_bi nary/ 1, 2 isused to convert aterminto the external format. To convert
binary data encoding to aterm, the BIF er | ang: bi nary_to_t erm 1 isused.

The distribution does thisimplicitly when sending messages across node boundaries.

The overall format of the term format is as follows:

1 1 N

131 Tag Dat a

Table 11.1: Term Format

When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the terms that follow the distribution header. This is because the version
number isimplied by the version number in the distribution header.

The compressed term format is as follows:

1 1 4 N
131 80 Unconpr essedSi ze 211 b-
P conpr essedDat a

Table 11.2: Compressed Term Format

Uncompressed size (unsigned 32-bit integer in big-endian byte order) isthe size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Tag Dat a

Table 11.3: Compressed Data Format when Expanded

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

Asfrom ERTS 9.0 (OTP 20), atoms may contain any Unicode characters and are always encoded using the UTF-8
external formats ATOM _UTF8_EXT or SMALL_ATOM UTF8_EXT. The old Latin-1 formats ATOM_EXT and
SMALL_ATOM EXT are deprecated and are only kept for backward compatibility when decoding terms encoded
by older nodes.

Support for UTF-8 encoded atoms in the external format has been available since ERTS 5.10 (OTP R16). This
abillity allows such old nodes to decode, store and encode any Unicode atoms received from a new OTP 20 node.

The maximum number of allowed charactersin an atom is 255. In the UTF-8 case, each character can need 4 bytes
to be encoded.

1.11.2 Distribution Header

Asfrom ERTS5.7.2 the old atom cache protocol was dropped and anew one wasintroduced. This protocol introduced
the distribution header. Nodes with an ERTS version earlier than 5.7.2 can still communicate with new nodes, but no
distribution header and no atom cache are used.

The distribution header only contains an atom cache reference section, but can in the future contain more information.
The distribution header precedes one or more Erlang terms on the external format. For more information, see the
documentation of the protocol between connected nodesin the distribution protocol documentation.

ATOM_CACHE_REF entries with corresponding At omCacheRef er encel ndex intermsencoded on the external
format following a distribution header refer to the atom cache references made in the distribution header. Therangeis
0<=At onCacheRef er encel ndex < 255, that is, at most 255 different atom cache references from the following
terms can be made.

The distribution header format is as follows:

1 1 1 Nun1berOfAto?10CacheRefs 2+1 N|O
131 68 Nurfber O At onCacheRefs Fl ags At onCacheRef s

Table 11.4: Distribution Header Format

Fl ags consist of Number OF At onCacheRef s/ 2+1 bytes, unless Nunber OF At onCacheRef s is 0. If
Number O At onCacheRef s is 0, Fl ags and At onCacheRef s are omitted. Each atom cache reference has
a half byte flag field. Flags corresponding to a specific At onCacheRef er encel ndex are located in flag byte
number At onCacheRef er encel ndex/ 2. Flag byte 0 is the first byte after the Nunber OF At onCacheRef s
byte. Flagsfor an even At onCacheRef er encel ndex arelocated in the least significant half byte and flags for an
odd At onCacheRef er encel ndex are located in the most significant half byte.

Theflag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEnt r yFl ag Segrent | ndex

Table 11.5:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

1.11 External Term Format

The most significant bit is the NewCacheEnt r yFl ag. If set, the corresponding cache reference is new. The three
least significant bits are the Segrent | ndex of the corresponding atom cache entry. An atom cache consists of 8
segments, each of size 256, that is, an atom cache can contain 2048 entries.

After flag fields for atom cache references, another half byte flag field is located with the following format:

3 bits 1 bit

Currentl yUnused LongAt onrs

Table 11.6:

The least significant bit in that half byte is flag LongAt ons. If it is set, 2 bytes are used for atom lengths instead
of 1 bytein the distribution header.

After the Fl ags field follow the At onCacheRef s. The first At omCacheRef is the one corresponding to
At onCacheRef er encel ndex 0. Higher indices follow in sequence up to index Nunber Of At omCacheRef s
- 1.

If the NewCacheEnt r yFI ag for the next At onCacheRef hasbeen set, aNewAt omCacheRef onthefollowing
format follows:

1 1|2 Length

I nt er nal Segnent | ndex Lengt h At onText

Table 11.7:

I nt er nal Segnent | ndex together with the Segnent | ndex completely identify the location of an atom
cache entry in the atom cache. Lengt h is the number of bytes that At onTText consists of. Length is a 2
byte big-endian integer if flag LongAt ons has been set, otherwise a 1 byte integer. When distribution flag
DFLAG UTF8_ ATOMS has been exchanged between both nodes in the distribution handshake, characters in
At oniText are encoded in UTF-8, otherwise in Latin-1. The following CachedAt onRef s with the same
Segrrent | ndex and | nt er nal Segnent | ndex as this NewAt onCacheRef refer to this atom until a new
NewAt onCacheRef with the same Segnent | ndex and | nt er nal Segnent | ndex appear.

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

If the NewCacheEnt r yFl ag for the next At onCacheRef hasnot been set, aCachedAt onRef on thefollowing
format follows:

1

I nt er nal Segnent | ndex

Table 11.8:

I nt er nal Segnent | ndex together with the Segrent | ndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAt onRef is the latest NewAt onCacheRef preceding this
CachedAt onRef inanother previousdly passed distribution header.

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

1.11.3 ATOM_CACHE_REF

1 1

82 At onCacheRef er encel ndex

Table 11.9: ATOM_CACHE_REF

Refers to the atom with At onCacheRef er encel ndex in the distribution header.

1.11.4 SMALL INTEGER_EXT

1 1

97 I nt

Table 11.10: SMALL_INTEGER_EXT

Unsigned 8-bit integer.
1.11.5 INTEGER_EXT

1 4

98 I nt

Table 11.11: INTEGER_EXT

Signed 32-bit integer in big-endian format.

1.11.6 FLOAT _EXT

1 31

99 Fl oat string

Table 11.12: FLOAT_EXT

A float is stored in string format. The format used in sprintf to format the float is "%.20€" (there are more bytes
allocated than necessary). To unpack the float, use sscanf with format " %ol f".

Thisterm isused in minor version 0 of the external format; it has been superseded by NEW FLOAT EXT.

1.11.7 REFERENCE_EXT

1 N 4 1

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

1.11 External Term Format

101 Node ID Creation

Table 11.13: REFERENCE_EXT

Encodes a reference object (an object generated with erlang: make ref/0). The Node term is an encoded atom, that
is, ATOM UTF8_EXT, SMALL_ATOM UTF8_EXT, or ATOM CACHE_REF. The I D field contains a big-endian
unsigned integer, but is to be regarded as uninterpreted data, as this field is node-specific. Cr eat i on is abyte
containing a node serial number, which makes it possible to separate old (crashed) nodes from a new one.

In 1 D, only 18 bits are significant; the rest are to be 0. In Cr eat i on, only two bits are significant; the rest are to
be 0. See NEW REFERENCE_EXT.

1.11.8 PORT_EXT

1 N 4 1

102 Node ID Creation

Table 11.14: PORT_EXT

Encodes aport object (obtained from er | ang: open_port/ 2). Thel Disanode-specific identifier for alocal port.
Port operations are not allowed across node boundaries. The Cr eat i on worksjust likein REFERENCE _EXT.

1.11.9 PID_EXT

1 N 4 4 1
103 Node I D Seri al Creation
Table 11.15: PID_EXT

Encodes a process identifier object (obtained from er | ang: spawn/ 3 or friends). The |l Dand Cr eat i on fields
works just like in REFERENCE_EXT, while the Ser i al field is used to improve safety. In | D, only 15 bits are
significant; the rest are to be 0.

1.11.10 SMALL TUPLE_EXT

1

N

104

Arity

El enent s

Table 11.16: SMALL TUPLE_EXT

Encodes atuple. The Ari ty field is an unsigned byte that determines how many elements that follows in section

El ement s.

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

1.11.11 LARGE_TUPLE_EXT

1

N

105

Arity

El enent s

Table 11.17: LARGE_TUPLE_EXT

Sameas SMALL_TUPLE_EXT except that Ar i t y isan unsigned 4 byte integer in big-endian format.

1.11.12 MAP_EXT

1

116

Arity

Pairs

Table 11.18: MAP_EXT

Encodesamap. The Ari ty field is an unsigned 4 byte integer in big-endian format that determines the number of

key-value pairs in the map. Key and value pairs (Ki

K1, Vi, K2, V2,..., Kn,
Asfrom Erlang/OTP 17.0

1.11.13 NIL_EXT

=> Vi) are encoded in section Pai r s in the following order:
Vn. Duplicate keys are not allowed within the same map.

106

Table 11.19: NIL_EXT

The representation for an empty list, that is, the Erlang syntax [] .

1.11.14 STRING_EXT

1

Len

107

Lengt h

Characters

Table 11.20: STRING_EXT

String does not have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Asfield Lengt h isan unsigned 2 byteinteger (big-endian),
implementations must ensure that lists longer than 65535 elements are encoded as L1 ST_EXT.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

1.11 External Term Format

1.11.15 LIST _EXT

1 4

108 Length El ement s Tai |

Table 11.21: LIST_EXT

Lengt h isthe number of elementsthat followsin section El enent s. Tai | isthefinal tail of thelist; itisNI L_EXT
for aproper list, but can be any typeif thelist isimproper (for example, [a| b]).

1.11.16 BINARY_EXT

1 4 Len

109 Len Dat a

Table 11.22: BINARY_EXT

Binaries are generated with bit syntax expression or with erlang:list_to_binary/1,
erlang:termto_binary/ 1, orasinput from binary ports. The Len length field is an unsigned 4 byte integer
(big-endian).

1.11.17 SMALL BIG_EXT

1 1 1 n

110 n Sign d(0) ..d(n-1)

Table 11.23: SMALL BIG_EXT

Bignums are stored in unary formwith aSi gn byte, that is, O if the binum is positiveand 1 if it is negative. The digits
are stored with the least significant byte stored first. To calculate the integer, the following formula can be used:

B = 256
(dO*Br0 + d1*Br1 + d2*Br2 + ... d(N-1)*B*(n-1))

1.11.18 LARGE_BIG_EXT

1 4 1 n

111 n Si gn d(0) ..d(n-1)

Table 11.24: LARGE_BIG_EXT

Sameas SMALL_BI G_EXT except that the length field is an unsigned 4 byte integer.

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11

External Term Format

1.11.19 NEW_REFERENCE_EXT

1 2 N 1 N'
114 Len Node Creation ID .
Table 11.25: NEW_REFERENCE_EXT

Node and Cr eat i on areasin REFERENCE EXT.

I D contains a sequence of big-endian unsigned integers (4 bytes each, so N isamultiple of 4), but is to be regarded
as uninterpreted data.

N =4*Len.

In the first word (4 bytes) of | D, only 18 bits are significant, the rest areto be 0. In Cr eat i on, only two bits are
significant, the rest areto be 0.

NEW REFERENCE_EXT was introduced with distribution version 4. Inversion 4, N isto be at most 12.
See REFERENCE_EXT.

1.11.20 FUN_EXT

1 4 N1 N2 N3 N4 N5
117 Nunfr ee Pi d Mbdul e I ndex Uni q Free
vars ...
Table 11.26: FUN_EXT

Pid
A processidentifier asin Pl D_EXT. Represents the process in which the fun was created.
Modul e

Encoded as an atom, using ATOM _UTF8_EXT, SMALL_ATOM UTF8_EXT, or ATOM CACHE_REF. Thisis
the modul e that the fun isimplemented in.

I ndex

An integer encoded using SMALL | NTEGER EXT or | NTEGER_EXT. It is typically a small index into the
module's fun table.

Uni q

An integer encoded using SMALL | NTEGER _EXT or | NTEGER _EXT. Uni q is the hash vaue of the parse
for the fun.

Free vars

Nuntr ee number of terms, each one encoded according to its type.

1.11.21 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 NS

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

1.11 External Term Format

Free

112 Size | Arity | Uniq | I ndex |NunFree|Mddul eQ dl ndexd dunig| Pid Var s

Table 11.27: NEW_FUN_EXT

Thisisthe new encoding of internal funs: f un F/ Aandfun(Argl,..) -> ... end.
Si ze
Thetotal number of bytes, including field Si ze.
Arity
The arity of the function implementing the fun.
Uni g
The 16 bytes MD5 of the significant parts of the Beam file.
I ndex
An index number. Each fun within a module has an unique index. | ndex is stored in big-endian byte order.
Nuntr ee
The number of free variables.
Modul e

Encoded as an atom, using ATOM _UTF8_EXT, SMALL_ATOM UTF8_EXT, or ATOM CACHE_REF. Is the
module that the fun isimplemented in.

A dl ndex

An integer encoded using SMALL | NTEGER _EXT or | NTEGER _EXT. Is typicaly a small index into the
module's fun table.

a duni q

An integer encoded using SMALL_| NTEGER_EXT or | NTEGER_EXT. Uni g is the hash value of the parse
tree for the fun.

Pid
A processidentifier asin Pl D_EXT. Represents the process in which the fun was created.
Free vars

Nuntr ee number of terms, each one encoded according to its type.

1.11.22 EXPORT_EXT

1 N1 N2 N3

113 Modul e Functi on Arity

Table 11.28: EXPORT_EXT

Thisterm isthe encoding for external funs: f un M F/ A.

Modul e and Function are atoms (encoded using ATOM UTF8 EXT, SMALL ATOM UTF8 EXT, or
ATOM _CACHE_REF).

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

Arity isaninteger encoded using SMALL | NTEGER EXT.

1.11.23 BIT_BINARY_EXT

1 4 1 Len

77 Len Bits Dat a

Table 11.29: BIT_BINARY_EXT

This term represents a bitstring whose length in bits does not have to be amultiple of 8. The Len field isan unsigned
4 byte integer (big-endian). The Bi t s field is the number of bits (1-8) that are used in the last byte in the data field,
counting from the most significant bit to the least significant.

1.11.24 NEW_FLOAT_EXT

1 8

70 | EEE fl oat

Table 11.30: NEW_FLOAT EXT

A float is stored as 8 bytes in big-endian |EEE format.
Thisterm is used in minor version 1 of the external format.

1.11.25 ATOM_UTF8_EXT

1 2 Len

118 Len At omNane

Table 11.31: ATOM_UTF8_EXT

Anatom isstored with a2 byte unsigned length in big-endian order, followed by Len bytes containing the At onNane
encoded in UTF-8.

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

1.11.26 SMALL_ATOM_UTF8_EXT

1 1 Len

119 Len At omNane

Table 11.32: SMALL_ATOM_UTF8_EXT

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

1.12 Distribution Protocol

Anatomisstored with al byte unsigned length, followed by Len bytes containing the At onNane encoded in UTF-8.
Longer atoms encoded in UTF-8 can be represented using ATOM _UTF8_EXT.

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

1.11.27 ATOM_EXT (deprecated)

1 2 Len

100 Len At omNane

Table 11.33: ATOM_EXT

An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len numbers of 8-bit Latin-1
characters that forms the At oniName. The maximum allowed value for Len is 255.

1.11.28 SMALL _ATOM_EXT (deprecated)

1 1 Len

115 Len At omNane

Table 11.34: SMALL_ATOM_EXT

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8-bit Latin-1 characters that forms
the At omNanre.

SMALL_ATOM EXT was introduced in ERTS 5.7.2 and require an exchange of distribution flag
DFLAG _SMALL_ATOM TAGS inthe distribution handshake.

1.12 Distribution Protocol

Thisdescription isfar from complete. It will be updated if the protocol is updated. However, the protocols, both from
Erlang nodes to the Erlang Port Mapper Daemon (EPM D) and between Erlang nodes are stable since many years.

The distribution protocol can be divided into four parts:

e Low-level socket connection (1)

* Handshake, interchange node name, and authenticate (2)

e Authentication (doneby net _ker nel (3)) (3)

» Connected (4)

A node fetches the port number of another node through the EPMD (at the other host) to initiate a connection request.

For each host, where a distributed Erlang node is running, also an EPMD is to be running. The EPMD can be started
explicitly or automatically as aresult of the Erlang node startup.

By default the EPMD listens on port 43609.

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

(3) and (4) above are performed at the samelevel but thenet _ker nel disconnectsthe other nodeif it communicates
using an invalid cookie (after 1 second).

Theintegersin al multibyte fields are in big-endian order.

The Erlang Distribution protocol is not by itself secure and does not aim to be so. In order to get secure distribution
the distributed nodes should be configured to use distribution over tls. Seethe Using SSL for Erlang Distribution
User's Guide for details on how to setup a secure distributed node.

1.12.1 EPMD Protocol
The reguests served by the EPMD are summarized in the following figure.

Client Cor Nodel EPMD
ALIVEZ_REQ h‘
ALIYEZ_RESP
.‘ ..
ALIVE_CLOSE_REQ P’
PORT_PLEASEZ_RED h‘
PORTZ_RESF
.‘ ..
NAMES_REQ P’
NAMES_RESE
‘ ..
OUMP _REQ "
OUMP_RESP
‘ __
KILL_RE(h
KILL_RESP
‘ ..
STOP_REQ "
STOP_Ok_RESP
‘ __
STOP_MNOTOK_RESP
‘ ..

Figure 12.1: Summary of EPMD Requests

Each request * _REQis preceded by a 2 byte length field. Thus, the overall request format is as follows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

1.12 Distribution Protocol

2 n

Length Request

Table 12.1: Request Format

Register a Node in EPMD

When adistributed node is started it registersitself in the EPMD. The message ALI VE2_ _REQdescribed below is sent
from the node to the EPMD. The response from the EPMD isALI VE2_RESP.

1 2 1 1 2 2 2 Nlen 2 Elen

120 Port No NodeTypePr ot oldiogrest Ve.m[iersm Versi oMl en NodeNang El en Extra

Table 12.2: ALIVE2_REQ (120)

Por t No
The port number on which the node accept connection requests.
NodeType
77 = normal Erlang node, 72 = hidden node (C-node), ...
Pr ot ocol
0=TCP/IPv4, ...
H ghest Ver si on
The highest distribution version that this node can handle. The valuein Erlang/OTP R6B and later is 5.
Lowest Ver si on
The lowest distribution version that this node can handle. The value in Erlang/OTP R6B and later is 5.
Nl en
The length (in bytes) of field NodeNane.
NodeNane
The node name as an UTF-8 encoded string of NI en bytes.
El en
The length of field Ext r a.
Extra
Extrafield of El en bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed, the node is automatically unregistered from the EPMD.

The response message ALI VE2_RESP isasfollows:

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

121 Resul t Creation

Table 12.3: ALIVE2_RESP (121)

Result = 0 -> ok, result > 0 -> error.

Unregister a Node from EPMD

A node unregisters itself from the EPMD by closing the TCP connection to EPMD established when the node was
registered.

Get the Distribution Port of Another Node

When one node wants to connect to another node it starts with a PORT_PLEASE2 _ REQrequest to the EPMD on the
host where the node resides to get the distribution port that the node listens to.

1 N

122 NodeNane

Table 12.4: PORT_PLEASE2_REQ (122)

whereN =Length - 1.

1 1

119 Resul t

Table 12.5: PORT2_RESP (119) Response Indicating Error, Result > 0

or

1 1 2 1 1 2 2 2 Nlen 2 Elen

119 |Result PortNo\IodeTypTrotbi:gTest\lavarisirVers ddl en NodeNang Elen |>Extra

Table 12.6: PORT2_RESP, Result = 0

If Resul t >0, the packet only consistsof [119, Resul t].

The EPMD closes the socket when it has sent the information.

Get All Registered Names from EPMD

Thisrequest isused through the Erlang function net _adm nanes/ 1, 2. A TCP connection isopened to the EPMD
and this request is sent.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

1.12 Distribution Protocol

110
Table 12.7: NAMES_REQ (110)
Theresponse for aNAMVES REQis asfollows:
4
EPMDPor t No Nodel nf o*

Table 12.8: NAMES_RESP

Nodel nf o isastring written for each active node. When all Nodel nf o has been written the connection is closed
by the EPMD.

Nodel nf o is, asexpressed in Erlang:
io:format("name ~ts at port ~p~n", [NodeName, Port]).

Dump All Data from EPMD
Thisrequest is not really used, it isto be regarded as a debug feature.

1
100
Table 12.9: DUMP_REQ
The response for a DUMP_REQis asfollows:
4
EPNMDPor t No Nodel nf o*

Table 12.10: DUMP_RESP

Nodel nf o isastring written for each node kept in the EPMD. When al Nodel nf o has been written the connection
is closed by the EPMD.

Nodel nf o is, as expressed in Erlang:

io:format("active name ~ts at port ~p, fd = ~p~n",
[NodeName, Port, Fd]).
or
io:format("old/unused name ~ts at port ~p, fd = ~p ~n",

[NodeName, Port, Fd]).

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

Kill EPMD

This request kills the running EPMD. It is amost never used.

1
107

Table 12.11: KILL_REQ
Theresponsefor aKl LL_REQisasfollows:

2

OKString
Table 12.12: KILL_RESP
where OKSt ri ng is"OK".
STOP_REQ (Not Used)
1 n
115 NodeNarme

Table 12.13: STOP_REQ

wheren=Lengt h - 1.

The current implementation of Erlang does not careif the connection to the EPMD is broken.

Theresponse for a STOP_REQis asfollows:

.
OKString
Table 12.14: STOP_RESP
where OKSt ri ng is"STOPPED".
A negative response can look as follows:
-
NOKSt ri ng

Table 12.15: STOP_NOTOK_RESP

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

1.12 Distribution Protocol

where NOKSt r i ng is"NOEXIST".

1.12.2 Distribution Handshake

This section describes the distribution handshake protocol introduced in Erlang/OTP R6. This description was
previously located in $ERL_TOP/ | i b/ kernel /i nt ernal _doc/ di stri buti on_handshake. txt and
has more or less been copied and "formatted” here. It has been almost unchanged since 1999, but the handshake has
not changed much since then either.

General

The TCP/IP distribution uses a handshake that expects a connection-based protocol, that is, the protocol does not
include any authentication after the handshake procedure.

This is not entirely safe, as it is vulnerable against takeover attacks, but it is a tradeoff between fair safety and
performance.

The cookies are never sent in cleartext and the handshake procedure expects the client (called A) to be the first one
to prove that it can generate a sufficient digest. The digest is generated with the MD5 message digest algorithm and
the challenges are expected to be random numbers.

Definitions

A challenge is a 32-hit integer in big-endian order. Below the function gen_chal | enge() returns arandom 32-
bit integer used as a challenge.

A digest isa (16 bytes) MD5 hash of the challenge (astext) concatenated with the cookie (as text). Below, the function
gen_di gest (Chal | enge, Cooki e) generatesadigest as described above.

Anout _cooki e isthe cookie used in outgoing communication to a certain node, so that Asout _cooki e for Bis
to correspond with B'si n_cooki e for A and conversely. Asout _cooki e for Band Asi n_cooki e for B need
not be the same. Below the function out _cooki e(Node) returnsthe current node'sout _cooki e for Node.

An i n_cooki e is the cookie expected to be used by another node when communicating with us, so that A's
i n_cooki e for B corresponds with B'sout _cooki e for A. Below the functioni n_cooki e(Node) returnsthe
current node'si n_cooki e for Node.

The cookies are text strings that can be viewed as passwords.

Every message in the handshake starts with a 16-bit big-endian integer, which contains the message length (not
counting the two initial bytes). In Erlang this corresponds to option { packet, 2} ingen_t cp(3). Notice that
after the handshake, the distribution switchesto 4 byte packet headers.

The Handshake in Detail
Imagine two nodes, A that initiates the handshake and B that accepts the connection.
1) connect/accept
A connects to B through TCP/IP and B accepts the connection.
2) send_nane/r ecei ve_nane

A sendsaninitial identification to B, which receives the message. The message looks as follows (every "square”
is one byte and the packet header is removed):

R R +o---- +e---- R +e---- +----- +----- L +
| 'n'|Version®|Versionl|Flag0|Flagl|Flag2|Flag3|Name0®|Namel| ... |NameN|
R R +o---- +e---- R +e---- +----- +----- L +

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

'n'isthemessagetag. 'Version0' and 'Versionl' isthe distribution version selected by A, based oninformation from
the EPMD. (16-bit big-endian) 'Flag0' ... 'Flag3' are capability flags, the capabilities are defined in $ERL_TOP/
I'i b/ kernel/include/dist. hrl . (32-bit big-endian) 'Name0' ... 'NameN' is the full node name of A, as
astring of bytes (the packet length denotes how long it is).

3)recv_st at us/send_st at us
B sendsastatus messageto A, which indicatesif the connectionisallowed. Thefollowing status codes are defined:
ok
The handshake will continue,
ok_si mul t aneous

The handshake will continue, but A isinformed that B has another ongoing connection attempt that will be
shut down (simultaneous connect where A's name is greater than B's name, compared literaly).

nok

The handshake will not continue, as B already has an ongoing handshake, which it itself has initiated
(simultaneous connect where B's name is greater than A's).

not _al | owed
The connection is disallowed for some (unspecified) security reason.
alive

A connection to the node is already active, which either means that node A is confused or that the TCP
connection breakdown of a previous node with this name has not yet reached node B. See step 3B below.

The format of the status message is as follows:

| 's'|StatusO|Statusl| ... |StatusN|
B R R L +

'S isthe message tag. 'StatusO' ... 'StatusN' is the status as a string (not terminated).
3B) send_st at us/recv_st at us

If status was al i ve, node A answers with another status message containing either t r ue, which means that
the connection is to continue (the old connection from this node is broken), or f al se, which means that the
connection is to be closed (the connection attempt was a mistake.

4)recv_chal | enge/send_chal | enge

If the status was ok or ok_si rmul t aneous, the handshake continues with B sending A another message, the
challenge. The challenge contains the same type of information as the "name" message initially sent from A to
B, plus a 32-hit challenge:

e ommmmm e T - Fomme- e ommm- - - oo +----- to---- o +
| 'n'|Version0®|Versionl|Flag0|Flagl|Flag2|Flag3|Chal@|Chall|Chal2|Chal3|NameO|Namel| ... |NameN|
e ommmmm e - - Fommn- - omm-- T - oo +----- to---- o A +

'Chal0' ... 'Chal3' is the challenge as a 32-bit big-endian integer and the other fields are B's version, flags, and
full node name.

5)send_chal | enge_repl y/recv_chal | enge_reply
Now A has generated a digest and its own challenge. Those are sent together in a package to B:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

1.12 Distribution Protocol

R oo +o---- oo oo +----- oo +o---- R +
| “r'|Chalo|Chall|Chal2|Chal3|Dige0|Digel|Dige2|Dige3| ... |Digel5|
R oo +o---- oo oo +----- oo +o---- R +

'r'isthetag. 'Chal0' ... 'Cha3' is A's challenge for B to handle. 'DigeQ' ... 'Digel5' isthe digest that A constructed
from the challenge B sent in the previous step.

6)recv_chal | enge_ack/send_chal | enge_ack

B checks that the digest received from A is correct and generates a digest from the challenge received from A.
The digest is then sent to A. The message is as follows:

R LR +----- +o---- oo L +
| "a'|Dige0|Digel|Dige2|Dige3| ... |Digel5|
R LR +----- +o---- oo L +

'd isthetag. 'Dige0’ ... 'Digel5' isthe digest calculated by B for A's challenge.
7) check
A checks the digest from B and the connection is up.

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

Semigraphic View

A (initiator) B (acceptor)
TCP connect ----------------------~---- - >
TCP accept
send Name ------------ooo oo >
recv_name
e T T send status

recv_status
(if status was 'alive'

send status - - - - - - - - - - - - - - - - - . >
recv_status)
ChB = gen challenge()
(ChB)
SRR R R R Rl send_challenge

recv_challenge

ChA = gen challenge(),
0CA = out cookie(B),
DiA = gen digest(ChB, 0CA)
(ChA, DiA)
send challenge reply ----------cmmmmmmmmonn >
recv_challenge reply
ICB = in cookie(A),
check:
DiA == gen digest (ChB, ICB)?
- if OK:
0CB = out cookie(A),
DiB = gen digest (ChA, 0CB)
(DiB)
e R T send challenge ack
recv_challenge ack DONE
ICA = in _cookie(B), - else:
check: CLOSE
DiB == gen digest(ChA, ICA)?
- if OK:
DONE
- else:
CLOSE

Distribution Flags
The following capability flags are defined:
- def i ne(DFLAG _PUBLI SHED, 16#1) .
The node is to be published and part of the global namespace.
- def i ne(DFLAG_ATOM CACHE, 16#2).
The node implements an atom cache (obsol ete).
- def i ne(DFLAG_EXTENDED REFERENCES, 16#4) .

The node implements extended (3 x 32 hits) references. This is required today. If not present, the connection
isrefused.

- def i ne(DFLAG DI ST_MONI TOR, 16#8) .
The node implements distributed process monitoring.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

1.12 Distribution Protocol

- defi ne(DFLAG_FUN_TAGS, 16#10).
The node uses separate tag for funs (lambdas) in the distribution protocol.
- defi ne(DFLAG_DI ST_MONI TOR_NAME, 16#20) .
The node implements distributed named process monitoring.
- def i ne(DFLAG_HI DDEN_ATOM CACHE, 16#40) .
The (hidden) node implements atom cache (obsol ete).
- defi ne(DFLAG_NEW FUN_TAGS, 16#80) .
The node understand new fun tags.
- def i ne(DFLAG_EXTENDED_PI DS_PORTS, 16#100) .
The node can handle extended pids and ports. Thisis required today. If not present, the connection is refused.

- def i ne(DFLAG_EXPORT_PTR_TAG, 16#200).
- defi ne(DFLAG_BI T_BI NARI ES, 16#400) .
- def i ne(DFLAG_NEW FLOATS, 16#800) .

The node understands new float format.

- def i ne(DFLAG_UNI CODE_| O, 16#1000) .
- def i ne(DFLAG DI ST_HDR_ATOM CACHE, 16#2000) .

The node implements atom cache in distribution header.
- defi ne(DFLAG_SMALL_ATOM TAGS, 16#4000).
The node understand the SMALL_ ATOM_EXT tag.
- defi ne(DFLAG_UTF8_ATOMS, 16#10000) .
The node understand UTF-8 encoded atoms.

1.12.3 Protocol between Connected Nodes

As from ERTS 5.7.2 the runtime system passes a distribution flag in the handshake stage that enables the use of a
distribution header on all messages passed. Messages passed between nodes have in this case the following format:

4 d n m

Length Di stributi onHeader Cont r ol Message Message

Table 12.16: Format of Messages Passed between Nodes (as from ERTS 5.7.2)

Length

Equal tod+n+m.
Cont r ol Message

A tuple passed using the external format of Erlang.
Message

The message sent to another node using the "' (in external format). Notice that Message is only passed in
combination with aCont r ol Message encoding asend ('!").

Notice that the version number is omitted from the terms that follow a distribution header .

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

Nodes with an ERTS version earlier than 5.7.2 does not pass the distribution flag that enables the distribution header.
M essages passed between nodes have in this case the following format:

4 1 n m

Length Type Cont r ol Message Message

Table 12.17: Format of Messages Passed between Nodes (before ERTS 5.7.2)

Length
Equaltol+n+m.
Type
Equal to 112 (pass through).
Cont r ol Message
A tuple passed using the external format of Erlang.
Message

The message sent to another node using the "' (in external format). Notice that Message is only passed in
combination with a Cont r ol Message encoding asend ('!").

The Cont r ol Message isatuple, where the first element indicates which distributed operation it encodes:
LI NK

{1, FronPid, ToPid}
SEND

{2, Unused, ToPi d}

Followed by Message.

Unused iskept for backward compatibility.
EXIT

{3, FronPid, ToPid, Reason}
UNLI NK

{4, FronPid, ToPid}
NCODE_LI NK

{5}
REG_SEND

{6, FronPid, Unused, ToName}

Followed by Message.

Unused iskept for backward compatibility.
GROUP_LEADER

{7, FronPid, ToPid}
EXI T2

{8, FronPid, ToPid, Reason}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

1.12 Distribution Protocol

1.12.4 New Ctrlmessages for distrvsn = 1 (Erlang/OTP R4)
SEND TT
{12, Unused, ToPid, TraceToken}
Followed by Message.
Unused iskept for backward compatibility.
EXIT_TT
{13, FronPid, ToPid, TraceToken, Reason}
REG SEND TT
{16, FronPid, Unused, ToNanme, TraceToken}
Followed by Message.
Unused iskept for backward compatibility.
EXIT2_TT
{18, FronPid, ToPid, TraceToken, Reason}

1.12.5 New Ctrlmessages for distrvsn = 2

di st rvsn 2 was never used.

1.12.6 New Ctrimessages for distrvsn = 3 (Erlang/OTP R5C)

None, but the version number was increased anyway.

1.12.7 New Ctrimessages for distrvsn = 4 (Erlang/OTP R6)
These are only recognized by Erlang nodes, not by hidden nodes.
MONI TOR_P

{19, FronPid, ToProc, Ref},whereFronPi d=monitoringprocessand ToPr oc = monitored process
pid or name (atom)

DEMONI TCR_P

{20, FronPid, ToProc, Ref},whereFronPi d=monitoringprocessand ToPr oc =monitored process
pid or name (atom)

Weinclude Fr onPi d just in case we want to trace this.
MONI TOR P_EXI T

{21, FronProc, ToPid, Ref, Reason},whereFronProc =monitored process pid or name (atom),
ToPi d = monitoring process, and Reason = exit reason for the monitored process

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

2 Reference Manual

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

erl_prim_loader

erl_prim_loader

Erlang module

Thismoduleisused toload all Erlang modulesinto the system. The start script isalso fetched with thislow-level loader.
erl _prim.| oader knows about the environment and how to fetch modules.

Command-line flag - | oader Loader can be used to choose the method used by er| _pri m | oader. Two
Loader methods are supported by the Erlang runtime system: ef i | e andi net .

Exports

get file(Filename) -> {ok, Bin, FullName} | error
Types.
Filename = atom() | string()
Bin = binary()
FullName = string()
Fetches a file using the low-level loader. Fi | enane is either an absolute filename or only the name of the file, for

example, "I i sts. beant' . If aninternal path is set to the loader, this path is used to find the file. Ful | Nane isthe
complete name of the fetched file. Bi n isthe contents of the file asabinary.

Filename can aso be a file in an archive, for example, $OTPROOT/ | i b/ mesia-4.4.7. ezl
mesi a- 4. 4. 7/ ebi n/ mesi a. beam For information about archive files, scecode(3) .

get path() -> {ok, Path}
Types.
Path = [Dir :: string()]

Gets the path set in the loader. The path is set by the i ni t (3) process according to information found in the start
script.

list dir(Dir) -> {ok, Filenames} | error

Types.
Dir = string()
Filenames = [Filename :: string()]

Listsal thefilesin adirectory. Returns{ ok, Fi | enames} if successful, otherwiseerror.Fi | enanes isalist
of the names of al the filesin the directory. The names are not sorted.

Di r canasobeadirectory inanarchive, for example, SOTPROOT/ | i b/ mesi a-4. 4. 7. ez/ mesi a-4. 4.7/
ebi n. For information about archivefiles, see code(3) .

read file info(Filename) -> {ok, FileInfo} | error

Types:
Filename = string()
FileInfo = file:file_info()

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwiseerror. Filelnfoisa
record f i | e_i nf o, defined in the Kernel include filefi | e. hr| . Include the following directive in the module
from which the function is called:

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

-include lib("kernel/include/file.hrl").

For more information about therecordfi | e_i nfo,seefil e(3).

Filename can aso be a file in an archive, for example, $OTPROOT/ | i b/ mesia-4.4.7. ezl
mmesi a- 4. 4. 7/ ebi n/ mesi a. For information about archive files, seecode(3) .

read link info(Filename) -> {ok, FileInfo} | error

Types.
Filename = string()
FileInfo = file:file_info()

Worksliker ead_fil e_i nf o/ 1 exceptthatif Fi | ename isasymboliclink, information about thelink isreturned
inthefi | e_i nf o record andthet ype field of therecordissettosym i nk.

If Fi | enane is not a symbolic link, this function returns exactly the same result asread_fil e_i nfo/ 1. On
platforms that do not support symbolic links, this function is aways equivalenttor ead_fil e_i nf o/ 1.

set path(Path) -> ok
Types:
Path = [Dir :: string()]
Setsthe path of the loader if i ni t (3) interpretsapat h command in the start script.

Command-Line Flags
Theer| _pri m| oader moduleinterprets the following command-line flags:
-1 oader Loader

Specifiesthename of theloader usedbyer | _pri m | oader.Loader canbeefi | e (usethelocal file system)
ori net (load usingtheboot _ser ver on another Erlang node).

If flag - | oader isomitted, it defaultstoefi | e.
- | oader _debug

Makestheef i | e loader write some debug information, such as the reason for failures, while it handlesfiles.
-hosts Hosts

Specifies which other Erlang nodes the i net loader can use. This flag is mandatory if flag - | oader i net
is present. On each host, there must be on Erlang node with the er| _boot _ser ver (3), which handles the
load requests. Host s isalist of IP addresses (hostnames are not acceptable).

- set cooki e Cooki e
Specifies the cookie of the Erlang runtime system. Thisflag is mandatory if flag - | oader i net is present.

See Also

init(3), erl _boot_server(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

erlang

erlang

Erlang module

By convention, most Built-In Functions (BIFs) areincluded in this module. Some of the BIFs are viewed more or less
as part of the Erlang programming language and are auto-imported. Thus, it is not necessary to specify the module
name. For example, thecallsat om to_| i st (Erl ang) anderl ang: atom to_li st (Erl ang) areidentical.

Auto-imported BIFs are listed without module prefix. BIFs listed with module prefix are not auto-imported.

BIFs can fail for various reasons. All BIFsfail with reason badar g if they are called with arguments of an incorrect
type. The other reasons are described in the description of each individual BIF.

Some BIFs can be used in guard tests and are marked with "Allowed in guard tests'.

Data Types

ext binary()

A binary data object, structured according to the Erlang external term format.

iovec()

A list of binaries. This datatype is useful to use together with eni f _i nspect _i ovec.
message queue data() = off _heap | on_heap

See process_fl ag(nessage_queue_data, MD).

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

See erl ang: ti mest anp/ 0.

time unit() =
integer() >= 1 |
second |
millisecond |
microsecond |
nanosecond |
native |
perf counter |
deprecated_time_unit()

Supported time unit representations:
PartsPerSecond :: integer() >=1
Time unit expressed in parts per second. That is, the time unit equals 1/ Par t sPer Second second.
second
Symbolic representation of the time unit represented by the integer 1.
mllisecond
Symbolic representation of the time unit represented by the integer 1000.
nm crosecond
Symbolic representation of the time unit represented by the integer 1000000.

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

nanosecond

Symbolic representation of the time unit represented by the integer 1000000000.
native

Symbolic representation of the native time unit used by the Erlang runtime system.

The nat i ve time unit is determined at runtime system start, and remains the same until the runtime system
terminates. If aruntime system is stopped and then started again (even on the same machine), thenat i ve time
unit of the new runtime system instance can differ fromthenat i ve time unit of the old runtime system instance.

One can get an approximation of the nat i ve time unit by calling erl ang: convert _time_unit(1,
second, native). Theresult equalsthe number of whole nat i ve time units per second. If the number of
nat i ve time units per second does not add up to awhole number, the result is rounded downwards.

The value of the nat i ve time unit gives you more or less no information about the quality of time values.
It sets alimit for the resolution and for the precision of time values, but it gives no information about the
accuracy of time values. The resolution of the nat i ve time unit and the resolution of time values can differ
significantly.

perf _counter
Symbolic representation of the performance counter time unit used by the Erlang runtime system.

Theperf _count er time unit behaves much in the same way asthe nat i ve time unit. That is, it can differ
between runtime restarts. To get values of thistype, call os: perf_counter/O0.

deprecated_tinme_unit()
Deprecated symbolic representations kept for backwards-compatibility.

The time_unit/0 type can be extended. To convert time vaues between time units, use
erl ang: convert _tine_unit/3.

deprecated time unit() =
seconds | milli seconds | micro seconds | nano_seconds

Thetime_unit () typealso consist of the following deprecated symbolic time units:

seconds
Same assecond.
mlli_seconds

Sameasni | | i second.
m cro_seconds

Sameasni cr osecond.
nano_seconds

Same asnanosecond.

Exports
abs(Float) -> float()

abs(Int) -> integer() >= 0
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

erlang

Int = integer()
Types:
Fl oat = float()
Int = integer()
Returns an integer or float that is the arithmetical absolute value of Fl oat or | nt, for example:

> abs(-3.33).
3.33

> abs(-3).

3

Allowed in guard tests.

erlang:adler32(Data) -> integer() >= 0
Types:

Data = iodata()
Computes and returns the adler32 checksum for Dat a.

erlang:adler32(0ldAdler, Data) -> integer() >= 0
Types.

OldAdler = integer() >= 0

Data = iodata()

Continues computing the adler32 checksum by combining the previous checksum, A dAdl er , with the checksum
of Dat a.

The following code:

X
Y

erlang:adler32(Datal),
erlang:adler32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:adler32([Datal,Data2]).

erlang:adler32 combine(FirstAdler, SecondAdler, SecondSize) ->
integer() >= 0
Types.
FirstAdler = SecondAdler = SecondSize = integer() >= 0

Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

Y
z

erlang:adler32(Datal),
erlang:adler32(Y,Data2).

assigns the same value to Z asthis:

erlang:adler32(Datal),
erlang:adler32(Data2),

X
Y
Z = erlang:adler32 combine(X,Y,iolist size(Data2)).

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:append element(Tuplel, Term) -> Tuple2
Types:
Tuplel = Tuple2 = tuple()
Term = term()
Returnsanew tuplethat has one element morethan Tupl el, and containstheelementsin Tupl el followed by Ter m

asthe last element. Semantically equivalenttol i st _to_tupl e(tuple_to _|ist(Tuplel) ++ [Terni),
but much faster. Example:

> erlang:append element({one, two}, three).
{one, two, three}

apply(Fun, Args) -> term()
Types:
Fun = function()
Args = [term()]
Callsafun, passing the elementsin Ar gs as arguments.

If the number of elements in the arguments are known at compile time, the call is better written as Fun(Ar g1,
Arg2, ... ArgN).

Earlier, Fun could also be specified as{ Modul e, Functi on},equivaenttoappl y(Modul e, Functi on,
Ar gs) . Thisuseisdeprecated and will stop working in a futurerelease.

apply(Module, Function, Args) -> term()
Types:

Module = module()

Function = atom()

Args = [term()]

Returnstheresult of applying Funct i on inModul e to Ar gs. Theapplied function must be exported from Modul e.
The arity of the function isthe length of Ar gs. Example:

> apply(lists, reverse, [[a, b, cl]).
[c,b,al

> apply(erlang, atom to list, ['Erlang'l]).
"Erlang"

If the number of arguments are known at compile time, the call is better written as Modul e: Functi on(Argl,
Arg2, ..., ArgN).

Failure: error _handl er: undefi ned_f uncti on/ 3iscaledif the applied function is not exported. The error
handler can be redefined (see pr ocess_fl ag/ 2). If error _handl er isundefined, or if the user has redefined
the default er r or _handl er so the replacement module is undefined, an error with reason undef is generated.

atom to binary(Atom, Encoding) -> binary()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

erlang

Atom = atom()
Encoding = latinl | unicode | utf8
Returns a binary corresponding to the text representation of At om If Encodi ngisl at i n1, onebyte existsfor each

character in the text representation. If Encodi ng isut f 8 or uni code, the characters are encoded using UTF-8
where characters may require multiple bytes.

Asfrom Erlang/OTP 20, atoms can contain any Unicode character and at om t o_bi nary(Atom | atinl)
may fail if the text representation for At omcontains a Unicode character > 255.

Example:

> atom to binary('Erlang', latinl).
<<"Erlang">>

atom to list(Atom) -> string()
Types:
Atom = atom()
Returns a string corresponding to the text representation of At om for example:

> atom to list('Erlang').
"Erlang"

binary part(Subject, PosLen) -> binary()
Types:
Subject = binary()
PosLen = {Start :: integer() >= 0, Length :: integer()}
Extracts the part of the binary described by PosLen.
Negative length can be used to extract bytes at the end of a binary, for example:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary part(Bin,{byte size(Bin), -5}).
<<6,7,8,9,10>>

Failure: badar g if PosLen in any way references outside the binary.

St art iszero-based, that is:

1> Bin = <<1,2,3>>
2> binary part(Bin,{0,2}).
<<1,2>>

For details about the PosLen semantics, seebi nary(3) .
Allowed in guard tests.

binary part(Subject, Start, Length) -> binary()
Types.

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Subject = binary()

Start = integer() >= 0

Length = integer()
Thesameasbi nary_part (Subj ect, {Start, Length}).
Allowed in guard tests.

binary to atom(Binary, Encoding) -> atom()
Types.

Binary = binary()

Encoding = latinl | unicode | utf8

Returnsthe atom whosetext representationisBi nar y. If Encodi ngisl at i n1, notrandation of bytesinthebinary
isdone. If Encodi ng isut f 8 or uni code, the binary must contain valid UTF-8 sequences.

Asfrom Erlang/OTP 20, bi nary_t o_at on(Bi nary, utf 8) iscapable of encoding any Unicode character.
Earlier versionswould fail if the binary contained Unicode characters > 255. For more information about Unicode
support in atoms, see the note on UTF-8 encoded atoms in section "External Term Format” in the User's Guide.

Examples:

> binary to atom(<<"Erlang">>, latinl).
'"Erlang’

> binary to_atom(<<1024/utf8>>, utf8).
IEI

binary to existing atom(Binary, Encoding) -> atom()
Types:

Binary = binary()

Encoding = latinl | unicode | utf8
Asbi nary_t o_at oni 2, but the atom must exist.

Failure: badar g if the atom does not exist.

Note that the compiler may optimize away atoms. For example, the compiler will rewrite
atomto_ list(sonme_atom to "sonme_atom'. If that expression is the only mention of the atom
some_at omin the containing module, the atom will not be created when the module is loaded, and a subsequent
cal tobi nary_to_existing aton(<<"sone_atont'>>, utf8) will fail.

binary to float(Binary) -> float()
Types:
Binary = binary()
Returns the float whose text representation is Bi nar y, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

erlang

> binary to float(<<"2.2017764e+0">>).
2.2017764

Failure: badar g if Bi nar y contains a bad representation of afloat.
binary to integer(Binary) -> integer()
Types:
Binary = binary()
Returns an integer whose text representation is Bi nar y, for example:

> binary_to_integer(<<"123">>).
123

Failure: badar g if Bi nary contains abad representation of an integer.

binary to integer(Binary, Base) -> integer()

Types:
Binary = binary()
Base = 2..36

Returns an integer whose text representation in base Base isBi nar y, for example:

> binary to integer(<<"3FF">>, 16).
1023

Failure: badar g if Bi nary contains abad representation of an integer.

binary to list(Binary) -> [byte()]
Types:
Binary = binary()
Returns alist of integers corresponding to the bytes of Bi nary.

binary to list(Binary, Start, Stop) -> [byte()]
Types:

Binary = binary()

Start = Stop = integer() >=1

1..byte size(Bi nary)

Asbinary to |ist/1,butreturnsalist of integers corresponding to the bytes from position St ar t to position
St op in Bi nary. The positions in the binary are numbered starting from 1.

The one-based indexing for binaries used by this function is deprecated. New code is to use
bi nary: bin_to_list/3inSTDLIB instead. All functions in module bi nar y consistently use zero-based
indexing.

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

binary to term(Binary) -> term()
Types:
Binary = ext _binary()
Returns an Erlang term that is the result of decoding binary object Bi nar y, which must be encoded according to the
Erlang external term format.

> Bin = term_to binary(hello).
<<131,100,0,5,104,101,168,168,111>>
> hello = binary to term(Bin).
hello

When decoding binaries from untrusted sources, consider using bi nary_to_t erm 2 to prevent Denia of
Service attacks.

Seealsotermto _binary/land binary to term 2.

binary to term(Binary, Opts) -> term()
Types:
Binary = ext _binary()
Opts = [safe]
Asbinary_to_terni 1, buttakes options that affect decoding of the binary.
Option:
saf e
Use this option when receiving binaries from an untrusted source.

When enabled, it prevents decoding data that can be used to attack the Erlang system. In the event of receiving
unsafe data, decoding failswith abadar g error.

This prevents creation of new atoms directly, creation of new atoms indirectly (as they are embedded in certain
structures, such as process identifiers, refs, and funs), and creation of new external function references. None of
those resources are garbage collected, so unchecked creation of them can exhaust available memory.

Failure: badar g if saf e is specified and unsafe data is decoded.

> binary to term(<<131,100,0,5,104,101,108,108,111>>, [safe]).
** exception error: bad argument

> hello.

hello

> binary to term(<<131,100,0,5,104,101,108,108,111>>, [safe]).
hello

Seealsotermto _binary/ 1, binary to ternmfl,and list _to_existing atoni 1.
bit size(Bitstring) -> integer() >= 0
Types:
Bitstring = bitstring()
Returns an integer that isthe sizein bitsof Bi t st ri ng, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

erlang

> bit size(<<433:16,3:3>>).
19

> bit size(<<l,2,3>>).

24

Allowed in guard tests.

bitstring to list(Bitstring) -> [byte() | bitstring()]
Types:
Bitstring = bitstring()
Returnsalist of integers corresponding to the bytesof Bi t st ri ng. If the number of bitsin the binary isnot divisible
by 8, the last element of the list is a bitstring containing the remaining 1-7 bits.

erlang:bump reductions(Reductions) -> true
Types:
Reductions = integer() >=1
This implementation-dependent function increments the reduction counter for the calling process. In the Beam
emulator, the reduction counter is normally incremented by one for each function and BIF call. A context switch is

forced when the counter reaches the maximum number of reductions for a process (2000 reductions in Erlang/OTP
R12B).

This BIF can be removed in a future version of the Beam machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.

byte size(Bitstring) -> integer() >= 0
Types:
Bitstring = bitstring()
Returns an integer that is the number of bytes needed to contain Bi t st ri ng. That is, if the number of bits in
Bi t st ri ngisnot divisible by 8, the resulting number of bytesis rounded up. Examples:

> byte size(<<433:16,3:3>>).
3

> byte size(<<1,2,3>>).
3

Allowed in guard tests.

erlang:cancel timer(TimerRef) -> Result
Types:

TimerRef = reference()

Time = integer() >= 0

Result = Time | false

Cancelsatimer. Thesameascalling erl ang: cancel _timer(TinerRef, []).

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:cancel timer(TimerRef, Options) -> Result | ok
Types.
TimerRef = reference()
Async = Info = boolean()
Option = {async, Async} | {info, Info}
Options = [Option]
Time = integer() >= 0
Result = Time | false
Cancels a timer that has been created by erl ang: start_tiner or erl ang: send_after. Ti mer Ref
identifies the timer, and was returned by the BIF that created the timer.
Options:
{async, Async}
Asynchronousreguest for cancellation. Async defaultstof al se, which causesthe cancellation to be performed
synchronously. When Async is set to t r ue, the cancel operation is performed asynchronously. That is,

cancel _timer () sendsan asynchronous request for cancellation to the timer service that manages the timer,
and then returns ok.

{info, Info}

Requestsinformation about the Resul t of the cancellation. | nf o defaultstot r ue, which meansthe Resul t
isgiven. When | nf o issettof al se, no information about the result of the cancellation is given.

e When Async isfal se: if Infoistrue, the Resul t isreturned by erl| ang: cancel _tinmer().
otherwise ok isreturned.

e When Async istrue: if I nfo istrue, a message on the form {cancel _ti ner, Ti mer Ref,
Resul t} issenttothecaller of erl ang: cancel _ti mer () when the cancellation operation has been
performed, otherwise no message is sent.

More Opt i ons may be added in the future.
If Resul t isaninteger, it represents the time in milliseconds left until the canceled timer would have expired.

If Resul t isf al se, atimer corresponding to Ti ner Ref could not be found. This can be either because the timer
had expired, aready had been canceled, or because Ti ner Ref never corresponded to atimer. Even if the timer had
expired, it does not tell you if the time-out message has arrived at its destination yet.

The timer service that manages the timer can be co-located with another scheduler than the scheduler that the
calling process is executing on. If so, communication with the timer service takes much longer time than if it is
located locally. If the calling processisin critical path, and can do other things while waiting for the result of this
operation, or is not interested in the result of the operation, you want to use option { async, true}.If using
option{ async, fal se}, thecalling process blocks until the operation has been performed.

Seeasoerl ang: send_after/4, erlang: start _timer/4,and erl ang: read_ti mer/ 2.

ceil(Number) -> integer()
Types.
Number = number()

Returns the smallest integer not less than Nunber . For example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 107

erlang

> ceil(5.5).
6

Allowed in guard tests.

check old code(Module) -> boolean()
Types.

Module = module()
Returnst r ue if Mbdul e has old code, otherwisef al se.

Seealso code(3).

check process code(Pid, Module) -> CheckResult
Types.

Pid = pid()

Module = module()

CheckResult = boolean()

Thesameas check _process _code(Pid, Mdule, []) .

check process code(Pid, Module, OptionList) -> CheckResult | async
Types:
Pid = pid()
Module = module()
RequestId = term()
Option = {async, RequestId} | {allow gc, boolean()}
OptionList = [Option]
CheckResult = boolean() | aborted
Checksif the node local process identified by Pi d executes old code for Modul e.
Options:
{all ow_gc, bool ean()}

Determines if garbage collection is alowed when performing the operation. If {al | ow _gc, fal se} is
passed, and a garbage collection is needed to determine the result of the operation, the operation is aborted
(see information on CheckResul t below). The default is to allow garbage collection, that is, { al | ow_gc,
true}.

{async, Request|d}

Thefunctioncheck _process_code/ 3 returnsthevalueasync immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{check_process_code, Requestld, CheckResult}.

If Pi d equalssel f () ,andnoasync option hasbeen passed, the operation is performed at once. Otherwise arequest
for the operation is sent to the process identified by Pi d, and is handled when appropriate. If no async option has
been passed, the caller blocks until CheckResul t isavailable and can be returned.

CheckResul t informs about the result of the request as follows:

108 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

true

The process identified by Pi d executes old code for Modul e. That is, the current call of the process executes
old code for this module, or the process has references to old code for this module, or the process contains funs
that references old code for this module.

fal se
The process identified by Pi d does not execute old code for Mbdul e.
aborted

The operation was aborted, as the process needed to be garbage collected to determine the operation result, and
the operation was requested by passing option{ al | ow_gc, fal se}.

Up until ERTS version 8.*, the check process code operation checks for al types of references to the old code.
That is, direct references (e.g. return addresses on the process stack), indirect references (f unsin process context),
and references to literals in the code.

As of ERTS version 9.0, the check process code operation only checks for direct references to the code. Indirect
references viaf unswill be ignored. If such f uns exist and are used after a purge of the old code, an exception
will be raised upon usage (same as the case when the f un is received by the process after the purge). Literals will
be taken care of (copied) at alater stage. Thisbehavior can as of ERTS version 8.1 be enabled when building OTP,
and will automatically be enabled if dirty scheduler support is enabled.

Seeaso code(3).
Failures:

badar g

If Pi d isnot anodelocal processidentifier.
badar g

If Mbdul e isnot an atom.
badar g

If Opti onLi st isaninvalidlist of options.

erlang:convert time unit(Time, FromUnit, ToUnit) -> ConvertedTime
Types:

Time = ConvertedTime = integer()

FromUnit = ToUnit = time_unit()

ConvertstheTi me valueof timeunit Fr ormruni t tothecorresponding Conver t edTi ne valueof timeunit ToUni t .
Theresult is rounded using the floor function.

Y ou can lose accuracy and precision when converting between time units. To minimize such loss, collect all data
at nat i ve time unit and do the conversion on the end result.

erlang:crc32(Data) -> integer() >= 0
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 109

erlang

Data = iodata()
Computes and returns the crc32 (IEEE 802.3 style) checksum for Dat a.

erlang:crc32(0ldCrc, Data) -> integer() >= 0
Types:

0ldCrc = integer() >= 0

Data = iodata()

Continues computing the crc32 checksum by combining the previous checksum, A dCr ¢, with the checksum of
Dat a.

The following code:

X
Y

erlang:crc32(Datal),
erlang:crc32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:crc32([Datal,Data2]).

erlang:crc32 combine(FirstCrc, SecondCrc, SecondSize) ->
integer() >= 0
Types:
FirstCrc = SecondCrc = SecondSize = integer() >= 0

Combines two previously computed crc32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

Y
z

erlang:crc32(Datal),
erlang:crc32(Y,Data2).

assigns the same valueto Z asthis:

erlang:crc32(Datal),
erlang:crc32(Data2),

X
Y
z erlang:crc32 combine(X,Y,iolist size(Data2)).

date() -> Date
Types:
Date = cal endar: date()
Returnsthe current date as{ Year, Mont h, Day}.

The time zone and Daylight Saving Time correction depend on the underlying OS. Example:

> date().
{1995,2,19}

erlang:decode packet(Type, Bin, Options) ->
{ok, Packet, Rest} |
{more, Length} |

110 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{error, Reason}
Types.
Type =
raw |
0 |
1|
2 |
4
asnl |
cdr |
sunrm |
fcgi |
tpkt |
line |
http |
http bin |
httph |
httph bin
Bin = binary()
Options = [Opt]
Opt =
{packet_size, integer() >= 0} |
{line_length, integer() >= 0}
Packet = binary() | HttpPacket
Rest = binary()
Length = integer() >= 0 | undefined
Reason = term()

HttpPacket =
HttpRequest | HttpResponse | HttpHeader | http eoh | HttpError

HttpRequest = {http request, HttpMethod, HttpUri, HttpVersion}

HttpResponse =
{http response, HttpVersion, integer(), HttpString}

HttpHeader =
{http_header,
integer(),
HttpField,
Reserved :: term(),
Value :: HttpString}

HttpError = {http error, HttpString}

HttpMethod =
"OPTIONS' |
'GET' |
'"HEAD' |
'"POST' |
'"PUT' |
'DELETE" |
'"TRACE' |
HttpString

HttpUri =

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 111

erlang

11 |

{absoluteURI,

http | https,

Host :: HttpString,

Port :: inet:port_nunber() | undefined,

Path :: HttpString} |
{scheme, Scheme :: HttpString, HttpString} |
{abs_path, HttpString} |
HttpString

HttpVersion =
{Major :: integer() >= 0, Minor :: integer() >= 0}
HttpField =

‘Cache-Control' |
‘Connection’' |
'Date’ |
‘Pragma’ |
‘Transfer-Encoding' |
'Upgrade’ |
'Via' |
"Accept’' |
"Accept-Charset' |
"Accept-Encoding' |
'Accept-Language’' |
'Authorization' |
‘From' |
'Host' |
'If-Modified-Since' |
'If-Match' |
'If-None-Match' |
'If-Range’ |
'If-Unmodified-Since' |
'Max-Forwards' |
'Proxy-Authorization' |
‘Range’ |
'Referer' |
‘User-Agent’' |
‘Age' |
‘Location’' |
'Proxy-Authenticate’ |
"Public' |
'Retry-After!’

'Server' |
‘Vary' |
‘Warning' |
"Www-Authenticate' |
"Allow’ |
‘Content-Base' |
‘Content-Encoding’' |
'Content-Language’' |
‘Content-Length' |
‘Content-Location' |
‘Content-Md5"' |

112 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

‘Content-Range' |
'Content-Type' |
'Etag' |
'Expires’' |
'Last-Modified' |
'Accept-Ranges’' |
'Set-Cookie' |
'Set-Cookie2' |
'X-Forwarded-For'
'Cookie' |
'Keep-Alive' |
'Proxy-Connection' |
HttpString
HttpString = string() | binary()

Decodes the binary Bi n according to the packet protocol specified by Type. Similar to the packet handling done by
sockets with option { packet , Type}.

If an entire packet is contained in Bin, it is returned together with the remainder of the binary as
{ ok, Packet , Rest }.

If Bi n does not contain the entire packet, { nor e, Lengt h} isreturned. Lengt h is either the expected total size
of the packet, or undef i ned if the expected packet size is unknown. decode_packet can then be caled again
with more data added.

If the packet does not conform to the protocol format, { er r or , Reason} isreturned.

Types:

raw | O
No packet handling is done. The entire binary is returned unlessit is empty.

1] 2] 4
Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes. The
length of the header can be one, two, or four bytes; the order of the bytes is big-endian. The header is stripped
off when the packet is returned.

line
A packet is aline-terminated by a delimiter byte, default is the latin-1 newline character. The delimiter byte is
included in the returned packet unless the line was truncated according to option | i ne_| engt h.

asnl | cdr | sunrm| fcgi | tpkt
The header is not stripped off.
The meanings of the packet types are as follows:

asnl - ASN.1BER
sunr m- Sun's RPC encoding
cdr - CORBA (GIOP 1.1)
fcgi - Fast CGI
t pkt - TPKT format [RFC1006]
http | httph | http_bin | httph_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket described
earlier. A packet is either a request, a response, a header, or an end of header mark. Invalid lines are returned
asHtt pError.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 113

erlang

Recognized request methods and header fields are returned as atoms. Others are returned as strings. Strings of
unrecognized header fields are formatted with only capital letters first and after hyphen characters, for example,
" Sec- Websocket - Key" .

The protocol type ht t p is only to be used for the first line when an Ht t pRequest or an Ht t pResponse
is expected. The following calls are to use ht t ph to get Ht t pHeader suntil ht t p_eoh is returned, which
marks the end of the headers and the beginning of any following message body.

Thevariantsht t p_bi nand ht t ph_bi n return strings (Ht t pSt r i ng) as binariesinstead of lists.

Options:

{packet size, integer() >= 0}
Sets the maximum allowed size of the packet body. If the packet header indicates that the length of the packet is
longer than the maximum allowed length, the packet is considered invalid. Defaults to 0, which means no size
limit.

{l'ine_length, integer() >= 0}
For packet typel i ne, lineslonger than the indicated length are truncated.

Option i ne_| ength also applies to htt p* packet types as an aias for option packet _si ze if
packet _si ze itself isnot set. Thisuseis only intended for backward compatibility.

{line_delimter, 0 =< byte() =< 255}
For packet typel i ne, setsthe delimiting byte. Default is the latin-1 character $\ n.
Examples:

> erlang:decode packet(1l,<<3,"abcd">>,[]).
{ok,<<"abc">>,<<"d">>}

> erlang:decode packet(1l,<<5,"abcd">>,[]).
{more, 6}

erlang:delete element(Index, Tuplel) -> Tuple2
Types.

Index = integer() >=1

1..tuple size(Tuplel)

Tuplel = Tuple2 = tuple()

Returns a new tuple with element at | ndex removed from tuple Tupl el, for example:

> erlang:delete element(2, {one, two, three}).
{one, three}

delete module(Module) -> true | undefined
Types.
Module = module()

Makes the current code for Modul e become old code and deletes all references for this module from the export table.
Returnsundef i ned if the module does not exist, otherwiset r ue.

114 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

This BIF isintended for the code server (see code(3)) and is not to be used elsewhere.

Failure: badar g if there already is an old version of Mbdul e.

demonitor(MonitorRef) -> true
Types:
MonitorRef = reference()

If Moni t or Ref is areference that the calling process obtained by calling moni t or / 2, this monitoring is turned
off. If the monitoring is already turned off, nothing happens.

Oncedenoni t or (Moni t or Ref) hasreturned, itisguaranteedthatno{' DOAN , MnitorRef, _, _, _}
message, because of the monitor, will be placed in the caller message queue in the future. However, a{' DO ,
MonitorRef, _, _, _} messagecan havebeen placed in the caller message queue beforethe call. It istherefore

usualy advisable to remove such a' DOAN message from the message queue after monitoring has been stopped.
denmoni t or (Moni torRef, [flush]) can be used instead of denoni t or (Moni t or Ref) if this cleanup
iswanted.

Before Erlang/OTP R11B (ERTS 5.5) denoni t or / 1 behaved completely asynchronously, that is, the monitor
was active until the "demonitor signal" reached the monitored entity. This had one undesirable effect. You could
never know when you were guaranteed not to receive a DOWN message because of the monitor.

The current behavior can be viewed as two combined operations: asynchronously send a"demonitor signal" to the
monitored entity and ignore any future results of the monitor.

Failure: Itisan error if Moni t or Ref refersto amonitoring started by another process. Not all such cases are cheap
to check. If checking is cheap, the call failswith badar g, for exampleif Moni t or Ref isaremote reference.

demonitor(MonitorRef, OptionList) -> boolean()

Types:
MonitorRef = reference()
OptionList = [Option]

Option = flush | info
Thereturned valueist r ue unlessi nf o ispart of Opt i onLi st .
denoni t or (Moni tor Ref, []) isequivaentto denonit or (Moni t or Ref) .
Opt i ons:
flush

Removes(one){_, MonitorRef, _, _, _} message, if thereisone, from the caller message queue after
monitoring has been stopped.

Calling denoni t or (Moni t or Ref, [fl ush]) isequivaent to the following, but more efficient:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 115

erlang

demonitor(MonitorRef),
receive
{ _, MonitorRef, , , } ->
true
after 0 ->
true
end

info
The returned value is one of the following:
true

The monitor was found and removed. In this case, no' DOAN message corresponding to this monitor has
been delivered and will not be delivered.

fal se

The monitor was not found and could not be removed. This probably because someone aready has placed
a' DOAN' message corresponding to this monitor in the caller message queue.

If option i nf o iscombined with option f | ush, f al se isreturned if aflush was needed, otherwiset r ue.

More options can be added in a future release.

Failures:

badar g

If Opti onLi st isnotalist.
badar g

If Opti onisaninvalid option.
badar g

The samefailure asfor denoni t or / 1.

disconnect node(Node) -> boolean() | ignored
Types.
Node = node()

Forcesthe disconnection of anode. This appearsto the node Node asif thelocal node has crashed. ThisBIFismainly
used in the Erlang network authentication protocols.

Returnst r ue if disconnection succeeds, otherwisef al se. If theloca nodeisnot aive, i gnor ed is returned.

erlang:display(Term) -> true
Types:
Term = term()
Prints atext representation of Ter mon the standard output.

| This BIF isintended for debugging only. |

116 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

element (N, Tuple) -> term()
Types.
N = integer() >=1
1..tuple size(Tuple)
Tuple = tuple()
Returns the Nth element (numbering from 1) of Tupl e, for example:

> element(2, {a, b, c}).
b

Allowed in guard tests.

erase() -> [{Key, Val}]
Types:
Key = Val = term()

Returns the process dictionary and deletesiit, for example:

> put(keyl, {1, 2, 3}),
put(key2, [a, b, c]),

erase().
[{key1,{1,2,3}},{key2,[a,b,c]}]

erase(Key) -> Val | undefined
Types:
Key = Val = term()

Returns the value Val associated with Key and deletes it from the process dictionary. Returns undef i ned if no
value is associated with Key. Example;

> put(keyl, {merry, lambs, are, playing}),
X = erase(keyl),

{X, erase(keyl)}.
{{merry,lambs,are,playing},undefined}

error(Reason) -> no return()
Types:
Reason = term()

Stops the execution of the calling process with the reason Reason, where Reason is any term. The exit reason is
{Reason, Wher e}, where Wher e isalist of the functions most recently called (the current function first). As
evaluating this function causes the process to terminate, it has no return value. Example:

> catch error(foobar).

{'EXIT',{foobar,[{erl eval,do apply,5},
{erl _eval,expr,5},
{shell,exprs,6},
{shell,eval exprs,6},
{shell,eval loop,3}1}}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 117

erlang

error(Reason, Args) -> no_return()
Types:
Reason = term()
Args = [term()]
Stops the execution of the calling process with the reason Reason, where Reason is any term. The exit reason is
{Reason, Wher e}, whereWWer e isalist of the functions most recently called (the current function first). Ar gs

is expected to be the list of arguments for the current function; in Beam it is used to provide the arguments for the
current functionin theterm Wher e. Asevaluating this function causes the processto terminate, it has no return value.

exit(Reason) -> no return()
Types:
Reason = term()

Stops the execution of the calling process with exit reason Reason, where Reason is any term. As evaluating this
function causes the process to terminate, it has no return value. Example:

> exit(foobar).

** exception exit: foobar
> catch exit(foobar).
{'EXIT', foobar}

exit(Pid, Reason) -> true
Types:
Pid = pid() | port()
Reason = term()
Sends an exit signal with exit reason Reason to the process or port identified by Pi d.
The following behavior appliesif Reason isany term, except nor mal orkil | :

» If Pi d isnot trapping exits, Pi d itself exits with exit reason Reason.

e |If Pid is trapping exits, the exit signal is transformed into a message {' EXI T', From Reason} and
delivered to the message queue of Pi d.

* Fr omisthe processidentifier of the processthat sent the exit signal. Seealso process_f 1l ag/ 2.

If Reason istheatom nor mal , Pi d doesnot exit. If it istrapping exits, the exit signal istransformed into a message
{"EXIT", From nornmal} anddelivered to its message queue.

If Reason istheatomki | | , thatis, if exi t (Pid, kill) iscaled, an untrappable exit signal is sent to Pi d,
which unconditionally exits with exit reason ki | | ed.

erlang:external size(Term) -> integer() >= 0
Types.
Term = term()

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies always:

> Sizel = byte size(term to binary()),
> Size2 erlang:external size(),

> true = Sizel =< Size2.

true

118 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Thisisequivalent to acall to:
erlang:external size(Term, [])

erlang:external size(Term, Options) -> integer() >= 0

Types.
Term = term()
Options = [{minor version, Version :: integer() >= 0}]

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies aways:

> Sizel byte size(term to binary(,)),
> Size2 = erlang:external size(,),

> true = Sizel =< Size2.

true

Option { m nor _version, Version} specifies how floats are encoded. For a detailed description, see
termto_binary/2

float (Number) -> float()
Types.
Number = number()
Returns afloat by converting Nunber to afloat, for example:

> float(55).
55.0

Allowed in guard tests.

If used on the top level in a guard, it tests whether the argument is a floating point number; for clarity, use
is_float/1instead.

When f | oat/ 1 isused in an expression in aguard, such as'f | oat (A) == 4. 0', it converts a number as
described earlier.

float to binary(Float) -> binary()
Types:
Float = float()
Thesameasfl oat _to_binary(Fl oat,[{scientific, 20}]).

float to binary(Float, Options) -> binary()
Types:

Float = float()

Options = [Option]

Option =

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 119

erlang

{decimals, Decimals :: 0..253} |
{scientific, Decimals :: 0..249} |
compact

Returns a binary corresponding to the text representation of FI oat using fixed decimal point formatting. Opt i ons
behavesinthesameway as fl oat _to_I|i st/ 2. Examples:

> float to binary(7.12, [{decimals, 4}1]).
<<"7.1200">>

> float to binary(7.12, [{decimals, 4}, compact]).
<<"7.12">>

float to list(Float) -> string()
Types:
Float = float()
Thesameasfl oat _to list(Float,[{scientific,20}]).

float to list(Float, Options) -> string()
Types:

Float = float()

Options = [Option]

Option =
{decimals, Decimals :: 0..253} |
{scientific, Decimals :: 0..249} |
compact

Returns a string corresponding to the text representation of Fl oat using fixed decimal point formatting.

Available options:

» If option deci nmal s is specified, the returned value contains at most Deci mal s number of digits past the
decimal point. If the number does not fit in the internal static buffer of 256 bytes, the function throws badar g.

e Ifoptionconpact isspecified, thetrailing zerosat the end of thelist aretruncated. Thisoptionisonly meaningful
together with option deci nal s.

» If option sci enti fi c is specified, the float is formatted using scientific notation with Deci mal s digits of
precision.

e |IfOptionsis[],thefunctionbehavesas fl oat to |ist/1.

Examples:

> float to list(7.12, [{decimals, 4}]).

"7.1200"

> float to list(7.12, [{decimals, 4}, compact]).
"7.12"

floor(Number) -> integer()
Types:
Number = number()
Returns the largest integer not greater than Nunber . For example:

120 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> floor(-10.5).
-11

Allowed in guard tests.

erlang:fun_info(Fun) -> [{Item, Info}]
Types.
Fun = function()

Item =
arity |
env |
index |
name |
module |
new index |
new uniq |
pid |
type |
unigq

Info = term()

Returns alist with information about the fun Fun. Each list element is a tuple. The order of the tuples is undefined,
and more tuples can be added in afuture release.

This BIF ismainly intended for debugging, but it can sometimes be useful in library functions that need to verify,
for example, the arity of afun.

Two types of funs have dightly different semantics:

e Afuncreated by fun M F/ Aiscalled an external fun. Calling it will always call the function F with arity A
in the latest code for module M Notice that module Mdoes not even need to be loaded when the funf un M F/
Aiscreated.

* All other funs are called local. When alocal fun is called, the same version of the code that created the fun is
caled (even if anewer version of the module has been loaded).

The following elements are always present in the list for both local and external funs:
{type, Type}
Typeisl ocal orexternal.
{nodul e, Modul e}
Modul e (an atom) isthe module name.
If Fun isalocal fun, Modul e isthe module in which the fun is defined.
If Fun isan external fun, Modul e isthe module that the fun refers to.
{nane, Nane}
Nane (an atom) is a function name.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 121

erlang

If Fun isaloca fun, Nane isthe name of the local function that implements the fun. (This name was generated
by the compiler, and is only of informational use. Asitisalocal function, it cannot be called directly.) If no code
iscurrently loaded for the fun, [] isreturned instead of an atom.

If Fun isan external fun, Name is the name of the exported function that the fun refersto.
{arity, Arity}
Ar ity isthe number of arguments that the fun isto be called with.
{env, Env}
Env (alist) isthe environment or free variables for the fun. For external funs, the returned list is always empty.
The following elements are only present in the list if Fun islocal:
{pid, Pid}
Pi d isthe processidentifier of the process that originally created the fun.
{i ndex, I ndex}
I ndex (aninteger) is an index into the module fun table.
{new_i ndex, | ndex}
I ndex (aninteger) is an index into the module fun table.
{new_uni q, Uniq}
Uni q (abinary) isaunique value for thisfun. It is calculated from the compiled code for the entire module.
{uni g, Uniq}

Uni g (an integer) is a unique value for this fun. As from Erlang/OTP R15, this integer is calculated from the
compiled code for the entire module. Before Erlang/OTP R15, thisinteger was based on only the body of the fun.

erlang:fun _info(Fun, Item) -> {Item, Info}
Types:
Fun = function()
Item fun_info_item)
Info term()
fun_info item() =
arity |
env |
index |
name |
module |
new_index |
new_uniq |
pid |
type |
uniq

Returnsinformation about Fun as specified by | t em intheform {1t em I nf 0} .
For any fun, | t emcan be any of the atoms nodul e, nane, ari ty, env, ortype.

For aloca fun, I t emcan aso be any of the atoms i ndex, new_i ndex, new_uni g, uni g, and pi d. For an
external fun, the value of any of theseitemsis always the atom undef i ned.

Seeerl ang: fun_info/ 1.

122 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:fun to list(Fun) -> string()
Types:
Fun = function()
Returns a string corresponding to the text representation of Fun.

erlang:function exported(Module, Function, Arity) -> boolean()
Types:
Module = module()
Function = atom()
Arity = arity()
Returnst r ue if the module Modul e isloaded and contains an exported function Funct i on/ Ari ty, orif thereis
aBIF (abuilt-in function implemented in C) with the specified name, otherwise returnsf al se.

This function used to return f al se for BIFs before Erlang/OTP 18.0. |

garbage collect() -> true

Forces an immediate garbage collection of the executing process. The function is not to be used unless it has been
noticed (or there are good reasons to suspect) that the spontaneous garbage collection will occur too late or not at all.

Improper use can seriously degrade system performance. |

garbage collect(Pid) -> GCResult
Types:

Pid = pid()

GCResult = boolean()
Thesameas gar bage_col l ect (Pid, []).

garbage collect(Pid, OptionList) -> GCResult | async
Types:
Pid = pid()
RequestId = term()
Option = {async, RequestId} | {type, major | minor}
OptionList = [Option]
GCResult = boolean()
Garbage collects the node local process identified by Pi d.

Option:

{async, Request|d}
Thefunction gar bage_col | ect/ 2 returnsthe value async immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{garbage_col |l ect, Requestld, GCResult}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 123

erlang

{type, "major' | 'minor'}
Triggers garbage collection of requested type. Default valueis' maj or ', which would trigger a fullsweep GC.
Theoption' m nor' isconsidered a hint and may lead to either minor or major GC run.

If Pi d equalssel f (), andnoasync option has been passed, the garbage collection is performed at once, that is, the
sameascaling gar bage_col | ect/ 0. Otherwise arequest for garbage collection is sent to the process identified
by Pi d, and will be handled when appropriate. If noasync option has been passed, the caller blocksuntil GCResul t
is available and can be returned.

CCResul t informs about the result of the garbage collection request as follows:

true
The processidentified by Pi d has been garbage collected.

fal se
No garbage collection was performed, as the process identified by Pi d terminated before the request could be
satisfied.

Notice that the same caveats apply asfor gar bage_col | ect/ 0.

Failures:

badar g

If Pi d isnot anodelocal processidentifier.
badar g

If Opti onLi st isaninvalid list of options.

get() -> [{Key, Val}]
Types:
Key = Val = term()

Returns the process dictionary asalist of { Key, Val } tuples, for example:

> put(keyl, merry),

put(key2, lambs),

put(key3, {are, playing}),

get().

[{keyl,merry}, {key2,lambs}, {key3,{are,playing}}]

get(Key) -> Val | undefined
Types:
Key = Val = term()

Returnsthevalue Val associated with Key inthe processdictionary, or undef i ned if Key doesnot exist. Example:

> put(keyl, merry),

put(key2, lambs),

put({any, [valid, terml}, {are, playing}),
get({any, [valid, term]}).

{are,playing}

erlang:get cookie() -> Cookie | nocookie
Types:
Cookie = atom()
Returns the magic cookie of the local node if the node is alive, otherwise the atom nocooki e.

124 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

get keys() -> [Key]
Types:
Key = term()
Returnsalist of all keys present in the process dictionary, for example:

> put(dog, {animal,1l}),
put(cow, {animal,2}),
put(lamb, {animal,3}),
get keys().

[dog, cow, lamb]

get keys(Val) -> [Key]
Types:
Val = Key = term()

Returns alist of keysthat are associated with the value Val in the process dictionary, for example:

> put(mary, {1, 2}),
put(had, {1, 2}),

put(a, {1, 2}),
put(little, {1, 2}),
put(dog, {1, 3}),
put(lamb, {1, 2}),

get keys({1, 2}).
[mary,had,a,little, lamb]

erlang:get stacktrace() -> [stack_item()]
Types:
stack item() =

{Module :: module(),
Function :: atom(),
Arity :: arity() | (Args :: [term()]),

Location
[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}

Getsthe call stack back-trace (stacktrace) for an exception that has just been caught in the calling process as alist of
{Modul e, Function, Arity, Locati on} tuples. Field Ari ty inthefirst tuple can be the argument list of that

function call instead of an arity integer, depending on the exception.

If there has not been any exceptionsin aprocess, the stacktraceis|] . After acode changefor the process, the stacktrace

canalsoberesetto[] .

erl ang: get _st ackt r ace/ O isonly guaranteed to return astacktraceif called (directly or indirectly) fromwithin

the scope of at ry expression. That is, the following call works:

try Expr
catch
C:R ->
{C,R,erlang:get stacktrace()}
end

Asdoesthiscal:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 125

erlang

try Expr
catch
C:R ->
{C,R,helper()}
end

helper() ->
erlang:get stacktrace().

Inafuturerelease, er | ang: get _st acktrace/ O will return[] if called from outside at r y expression. ‘

The stacktrace is the same data as operator cat ch returns, for example:

{'EXIT', {badarg,Stacktrace}} = catch abs(x)

Locat i on isa(possibly empty) list of two-tuples that can indicate the location in the source code of the function.
Thefirst element is an atom describing the type of information in the second element. The following items can occur:
file
The second element of the tupleisastring (list of characters) representing the filename of the source file of the
function.
line
The second element of the tuple is the line number (an integer > 0) in the source file where the exception
occurred or the function was called.

Seedsoerror/landerror/ 2.

group leader() -> pid()
Returns the process identifier of the group leader for the process evaluating the function.

Every process is a member of some process group and al groups have a group leader. All 1/O from the group is
channeled to the group leader. When anew processis spawned, it gets the same group leader as the spawning process.
Initially, at system startup, i ni t isboth its own group leader and the group leader of all processes.

group leader(GroupLeader, Pid) -> true
Types:
GrouplLeader = Pid = pid()

Sets the group leader of Pi d to Gr oupLeader . Typically, thisis used when a process started from a certain shell
isto have another group leader thani ni t .

Seealsogroup_| eader/ 0.

halt() -> no _return()
Thesameashal t (0, []).Example:

> halt().
0s_prompt%

126 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

halt(Status) -> no return()
Types:

Status = integer() >= 0 | abort | string()
Thesameas hal t (Status, []).Example

> halt(17).
0os_prompt% echo $?
17

0s_prompt%

halt(Status, Options) -> no return()

Types:
Status = integer() >= 0 | abort | string()
Options = [Option]
Option = {flush, boolean()}

St at us must be anon-negative integer, astring, or the atom abor t . Halts the Erlang runtime system. Has no return
value. Depending on St at us, the following occurs:

integer()
The runtime system exits with integer value St at us as status code to the calling environment (OS).

On many platforms, the OS supports only status codes 0-255. A too large status code is truncated by clearing
the high bits.

string()
An Erlang crash dump is produced with St at us as slogan. Then the runtime system exits with status code 1.
The string will be truncated if longer than 200 characters.

Before ERTS9.1 (OTP-20.1) only code pointsin the range 0-255 was accepted in the string. Now any unicode
string isvalid.

abort
The runtime system aborts producing a core dump, if that is enabled in the OS.

For integer St at us, the Erlang runtime system closes all ports and allows async threads to finish their operations
before exiting. To exit without such flushing, use Opt i on as{f | ush, f al se}.

For statusesst ri ng() andabort, optionf | ush isignored and flushing is not done.

hd(List) -> term()
Types:
List = [term(), ...]
Returns the head of Li st , that is, the first element, for example:

> hd([1,2,3,4,5]).
1

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 127

erlang

Allowed in guard tests.
Failure: badar g if Li st istheempty list[] .

erlang:hibernate(Module, Function, Args) -> no return()
Types:
Module = module()
Function = atom()
Args = [term()]
Puts the calling process into a wait state where its memory allocation has been reduced as much as possible. Thisis
useful if the process does not expect to receive any messages soon.

The process is awaken when amessage is sent to it, and control resumesin Modul e: Funct i on with the arguments
specified by Ar gs with the call stack emptied, meaning that the process terminates when that function returns. Thus
erl ang: hi ber nat e/ 3 never returnsto itscaller.

If the process has any messagein its message queue, the processis awakened immediately in the sameway as described
earlier.

In more technical terms, er | ang: hi ber nat e/ 3 discards the call stack for the process, and then garbage collects
the process. After this, all live datais in one continuous heap. The heap is then shrunken to the exact same size asthe
live datathat it holds (even if that size is less than the minimum heap size for the process).

If the size of the live datain the processis|ess than the minimum heap size, the first garbage collection occurring after
the process is awakened ensures that the heap size is changed to a size not smaller than the minimum heap size.

Notice that emptying the call stack means that any surrounding cat ch is removed and must be re-inserted after
hibernation. One effect of this is that processes started using pr oc_| i b (also indirectly, such as gen_ser ver
processes), areto use proc_l i b: hi ber nat e/ 3 instead, to ensure that the exception handler continues to work
when the process wakes up.

erlang:insert element(Index, Tuplel, Term) -> Tuple2
Types:

Index = integer() >=1

1..tuple size(Tuplel) + 1

Tuplel = Tuple2 = tuple()

Term = term()

Returns a new tuple with element Ter minserted at position | ndex in tuple Tupl el. All elements from position
| ndex and upwards are pushed one step higher in the new tuple Tupl e2. Example:

> erlang:insert element(2, {one, two, three}, new).
{one, new, two, three}

integer to binary(Integer) -> binary()
Types.
Integer = integer()
Returns a binary corresponding to the text representation of | nt eger , for example:

> integer to binary(77).
<<Il77ll>>

128 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

integer to binary(Integer, Base) -> binary()

Types.
Integer = integer()
Base = 2..36

Returns a binary corresponding to the text representation of | nt eger in base Base, for example:

> integer to binary(1023, 16).
<<"3FF">>

integer to list(Integer) -> string()
Types:
Integer = integer()
Returns a string corresponding to the text representation of | nt eger , for example:

> integer to list(77).
II77II

integer to list(Integer, Base) -> string()

Types:
Integer = integer()
Base = 2..36

Returns a string corresponding to the text representation of |1 nt eger in base Base, for example:

> integer to list(1023, 16).
II3FFII

iolist size(Item) -> integer() >= 0
Types:
Item = iolist() | binary()

Returns an integer, that isthe sizein bytes, of the binary that would betheresultof i ol i st _to_binary(lten),
for example:

> iolist size([1,2]<<3,4>>]).
4

iolist to binary(IoListOrBinary) -> binary()
Types:
IoListOrBinary = iolist() | binary()
Returns a binary that is made from the integers and binariesin | oLi st Or Bi nar y, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 129

erlang

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6>>.

<<6>>

> iolist to binary([Binl1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

erlang:iolist to iovec(IoListOrBinary) -> iovec()
Types:
IoListOrBinary = iolist() | binary()
Returns an iovec that is made from the integers and binariesin | oLi st Or Bi nary.

is alive() -> boolean()
Returnst r ue if thelocal nodeisalive (that is, if the node can be part of adistributed system), otherwisef al se.

is atom(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan atom, otherwisef al se.

Allowed in guard tests.

is binary(Term) -> boolean()
Types:

Term = term()
Returnst r ue if Ter misabinary, otherwisef al se.
A binary always contains a complete number of bytes.
Allowed in guard tests.

is bitstring(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misabitstring (including abinary), otherwisef al se.

Allowed in guard tests.

is boolean(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mistheatomt r ue or theatom f al se (that is, aboolean). Otherwise returnsf al se.

Allowed in guard tests.

130 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:is builtin(Module, Function, Arity) -> boolean()
Types.
Module = module()
Function = atom()
Arity = arity()
This BIF isuseful for builders of cross-reference tools.
Returnst r ue if Modul e: Function/ Ari ty isaBIFimplemented in C, otherwisef al se.

is float(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misafloating point number, otherwisef al se.

Allowed in guard tests.

is function(Term) -> boolean()
Types:

Term = term()
Returnst r ue if Ter misafun, otherwisef al se.

Allowed in guard tests.

is function(Term, Arity) -> boolean()
Types:
Term = term()
Arity = arity()
Returnst r ue if Ter misafun that can be applied with Ar i t y number of arguments, otherwisef al se.
Allowed in guard tests.

is integer(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan integer, otherwisef al se.

Allowed in guard tests.

is list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misalist with zero or more elements, otherwisef al se.

Allowed in guard tests.

is map(Term) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 131

erlang

Term = term()
Returnst r ue if Ter misamap, otherwisef al se.
Allowed in guard tests.

is number(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan integer or afloating point number. Otherwise returnsf al se.

Allowed in guard tests.

is pid(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaprocessidentifier, otherwisef al se.

Allowed in guard tests.

is port(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaport identifier, otherwisef al se.

Allowed in guard tests.

is process alive(Pid) -> boolean()
Types:

Pid = pid()
Pi d must refer to a process at the local hode.

Returnst r ue if the process exists and is alive, that is, is not exiting and has not exited. Otherwise returnsf al se.

is record(Term, RecordTag) -> boolean()
Types.

Term = term()

RecordTag = atom()

Returnst r ue if Ter misatuple and itsfirst element isRecor dTag. Otherwisereturnsf al se.

Normally the compiler treats callstoi s_r ecor d/ 2 especialy. It emits code to verify that Ter misatuple, that
itsfirst element isRecor dTag, and that the sizeis correct. However, if Recor dTag isnot aliteral atom, the BIF
i s_record/ 2iscaledinstead and the size of the tupleis not verified.

Allowed in guard tests, if Recor dTag isalitera atom.

132 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

is record(Term, RecordTag, Size) -> boolean()
Types.
Term = term()
RecordTag = atom()
Size = integer() >= 0
Recor dTag must be an atom.
Returnst r ue if Ter misatuple, itsfirst lementisRecor dTag, and itssizeis Si ze. Otherwisereturnsf al se.

Allowed in guard testsif Recor dTag isaliteral atom and Si ze isaliteral integer.

| This BIF is documented for completeness. Usually i s_r ecor d/ 2 isto be used. |

is reference(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misareference, otherwisef al se.

Allowed in guard tests.

is tuple(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misatuple, otherwisef al se.

Allowed in guard tests.

length(List) -> integer() >= 0
Types:

List = [term()]
Returnsthe length of Li st , for example:

> length([1,2,3,4,5,6,7,8,9]).
9

Allowed in guard tests.

link(PidOrPort) -> true
Types:
PidOrPort = pid() | port()

Createsalink between the calling process and another process (or port) Pi dOr Por t | if thereisnot such alink already.
If aprocess attempts to create alink to itself, nothing is done. Returnst r ue.

If Pi dOr Port does not exist, the behavior of the BIF depends on if the calling process is trapping exits or not (see
process_fl ag/ 2):

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 133

erlang

» If thecaling processis not trapping exits, and checking Pi dOr Por t ischeap (that is, if Pi dOr Por t islocal),
I i nk/ 1 failswith reason nopr oc

e Otherwise, if the calling processis trapping exits, and/or Pi dOr Por t isremote, | i nk/ 1 returnst r ue, but an
exit signal with reason nopr oc is sent to the calling process.

list to atom(String) -> atom()
Types.
String = string()
Returns the atom whose text representationis St r i ng.

As from Erlang/OTP 20, St ri ng may contain any Unicode character. Earlier versions allowed only |SO-latin-1
characters as the implementation did not allow Unicode characters above 255. For more information on Unicode
support in atoms, see hote on UTF-8 encoded atoms in section "External Term Format" in the User's Guide.

Example:

> list to atom("Erlang").
'Erlang’

list to binary(IoList) -> binary()
Types.
IoList = iolist()

Returns a binary that is made from the integers and binariesin | oLi st , for example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6>>.

<<6>>

> list to binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

list to bitstring(BitstringList) -> bitstring()
Types:
BitstringlList = bitstring_list()
bitstring list() =
maybe improper list(byte() | bitstring() | bitstring_list(),
bitstring() | [1)

Returns a bitstring that is made from the integers and bitstrings in Bi t stri nglLi st. (The last tal in
Bi t stri ngLi st isallowed to be abitstring.) Example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6,7:4>>.

<<6,7:4>>

> list to bitstring([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6,7:4>>

134 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

list to existing atom(String) -> atom()
Types:
String = string()
Returns the atom whose text representation is St r i ng, but only if there already exists such atom.
Failure: badar g if there does not already exist an atom whose text representationis St ri ng.

Note that the compiler may optimize away atoms. For example, the compiler will rewrite
atomto list(sonme_atom to "sonme_atom'. If that expression is the only mention of the atom
some_at omin the containing module, the atom will not be created when the module is loaded, and a subsequent
caltolist _to_existing aton("sone_atont') will fail.

list_to float(String) -> float()
Types:
String = string()
Returns the float whose text representation is St r i ng, for example:
> list to float("2.2017764e+0").
2.2017764
Failure: badar g if St ri ng contains a bad representation of afloat.
list to integer(String) -> integer()
Types.
String = string()
Returns an integer whose text representation is St r i ng, for example:

> list_to_integer("123").
123

Failure: badar g if St ri ng contains a bad representation of an integer.

list to integer(String, Base) -> integer()

Types:
String = string()
Base = 2..36

Returns an integer whose text representation in base Base is St r i ng, for example:

> list to integer("3FF", 16).
1023

Failure: badar g if St ri ng contains abad representation of an integer.

list to pid(String) -> pid()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 135

erlang

String = string()
Returns a process identifier whose text representationisa St r i ng, for example:

> list to pid("<0.4.1>").
<0.4.1>

Failure: badar g if St ri ng contains a bad representation of a process identifier.

This BIF isintended for debugging and is not to be used in application programs.

list _to port(String) -> port()
Types:
String = string()
Returns a port identifier whose text representationisa St r i ng, for example:

> list to port("#Port<0.4>").
#Port<0.4>

Failure: badar g if St ri ng contains a bad representation of a port identifier.

| This BIF isintended for debugging and is not to be used in application programs.

list to ref(String) -> reference()
Types:
String = string()
Returns a reference whose text representationisa St r i ng, for example:

> list to ref("#Ref<0.4192537678.4073193475.71181>").
#Ref<0.4192537678.4073193475.71181>

Failure: badar g if St ri ng contains a bad representation of areference.

This BIF isintended for debugging and is not to be used in application programs.

list to tuple(List) -> tuple()
Types:

List = [term()]
Returns atuple corresponding to Li st , for example

136 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> list to tuple([share, ['Ericsson B', 163]1]).
{share, ['Ericsson_B', 1631}

Li st can contain any Erlang terms.

load module(Module, Binary) -> {module, Module} | {error, Reason}

Types.
Module = module()
Binary = binary()
Reason = badfile | not purged | on_ load

If Bi nary contains the object code for module Modul e, this BIF loads that object code. If the code for module
Modul e already exists, all export references are replaced so they point to the newly loaded code. The previously
loaded code is kept in the system as old code, as there can still be processes executing that code.

Returns either { nodul e, Modul e}, or{error, Reason} if loadingfails. Reason isone of the following:

badfile
The object code in Bi nar y has an incorrect format or the object code contains code for another module than
Modul e.

not _purged
Bi nar y contains amodule that cannot be loaded because old code for this module already exists.

‘ This BIF isintended for the code server (see code(3)) and is not to be used elsewhere. ‘

erlang:load nif(Path, LoadInfo) -> ok | Error
Types:

Path = string()

LoadInfo = term()

Error = {error, {Reason, Text :: string()}}

Reason =
load failed | bad 1ib | load | reload | upgrade | old code

Loads and links a dynamic library containing native implemented functions (NIFs) for amodule. Pat h is afile path
to the shareable object/dynamic library file minus the OS-dependent file extension (. so for Unix and . dl | for
Windows). Notice that on most OSs the library has to have a different name on disc when an upgrade of the nif is
done. If the name is the same, but the contents differ, the old library may be loaded instead. For information on how
to implement aNIF library, seeer | _ni f (3).

Loadl nf o can be any term. It is passed on to the library as part of the initialization. A good practiceisto include a
module version number to support future code upgrade scenarios.

Thecall tol oad_ni f/ 2 must be made directly from the Erlang code of the module that the NIF library belongs to.
It returns either ok, or { err or, { Reason, Text } } if loading fails. Reason is one of the following atoms while
Text isahuman readable string that can give more information about the failure:

| oad_failed
The OSfailed to load the NIF library.
bad_lib
The library did not fulfill the requirements as a NIF library of the calling module.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 137

erlang

| oad | upgrade
The corresponding library callback was unsuccessful.

rel oad
A NIF library is aready loaded for this module instance. The previously deprecated r el oad feature was
removed in OTP 20.

ol d_code

Thecal tol oad_ni f/ 2 was made from the old code of a module that has been upgraded; thisis not allowed.

not sup
Lack of support. Such asloading NIF library for a HiPE compiled module.

erlang:loaded() -> [Module]
Types:
Module = module()
Returns alist of all loaded Erlang modules (current and old code), including preloaded modules.

Seeaso code(3).

erlang:localtime() -> DateTime
Types:
DateTime = cal endar: dateti ne()

Returnsthecurrent local dateandtime, { { Year, Mont h, Day}, {Hour, M nute, Second}},forexample

> erlang:localtime().
{{1996,11,6},{14,45,17}}

The time zone and Daylight Saving Time correction depend on the underlying OS.
erlang:localtime to universaltime(Localtime) -> Universaltime

Types:
Localtime = Universaltime = cal endar: dateti me()

Convertslocal date and timeto Universal Time Coordinated (UTC), if supported by the underlying OS. Otherwise no

conversionisdoneand Local t i e isreturned. Example:

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}).
{{1996,11,6},{13,45,17}}

Failure: badar g if Local ti nme denotesan invalid date and time.

erlang:localtime to universaltime(Localtime, IsDst) ->
Universaltime

Types:
Localtime = Universaltime = cal endar: dateti me()
IsDst = true | false | undefined

Converts local date and time to Universal Time Coordinated (UTC)
erlang:localtine_to_universaltine/1,butthecaler decidesif Daylight Saving Timeis active.

138 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

as

erlang

If |sDst == true, Localtine is during Daylight Saving Time, if | sDst == false it
is not. If |sDst == undefi ned, the underlying OS can guess, which is the same as calling
erlang:localtine_to_universaltinme(Localtine).

Examples:

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, true).
{{1996,11,6},{12,45,17}}

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, false).
{{1996,11,6},{13,45,17}}

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, undefined).
{{1996,11,6},{13,45,17}}

Failure: badar g if Local ti me denotesaninvalid date and time.

make ref() -> reference()
Returns a unique reference. The reference is unique among connected nodes.

Known issue: When a node is restarted multiple times with the same node name, references created on a newer
node can be mistaken for a reference created on an older node with the same node name.

erlang:make tuple(Arity, InitialValue) -> tuple()
Types:
Arity = arity()
InitialValue = term()
Creates anew tuple of the specified Ari t y, whereall elementsarel ni ti al Val ue, for example:

> erlang:make_tuple(4, [1).
{01,01,01,01}

erlang:make tuple(Arity, DefaultValue, InitList) -> tuple()
Types:
Arity = arity()
DefaultValue = term()
InitList = [{Position :: integer() >= 1, term()}]
Creates a tuple of size Arity, where each element has value Def aul t Val ue, and then fills in values from
I nitList.Eachlistelementinl nitLi st must beatwo-tuple, where the first element is a position in the newly

created tuple and the second element isany term. If aposition occurs more than oncein thelist, the term corresponding
to the last occurrence is used. Example:

> erlang:make tuple(5, [1, [{2,ignored},{5,zz},{2,aa}]).
{[1,aa,[1,[1,2z}

map_size(Map) -> integer() >= 0
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 139

erlang

Map = map()
Returns an integer, which is the number of key-value pairsin Map, for example:

> map_size(#{a=>1, b=>2, c=>3}).
3

Allowed in guard tests.

erlang:match spec test(MatchAgainst, MatchSpec, Type) ->
TestResult

Types:
MatchAgainst = [term()] | tuple()
MatchSpec = term()
Type = table | trace

TestResult =
{ok, term(), [return_trace], [{error | warning, string()}I1} |
{error, [{error | warning, string()}1}

Testsamatch specificationusedincalstoet s: sel ect/2and erl ang: t race_patt er n/ 3. Thefunction tests
both a match specification for "syntactic" correctness and runs the match specification against the object. If the match
specification contains errors, thetuple{ err or, Errors} isreturned, where Err or s isalist of natural language
descriptions of what was wrong with the match specification.

If Type is tabl e, the object to match against is to be a tuple. The function then returns { ok, Resul t,
[1. Warni ngs}, where Resul t iswhat would have been theresult in areal et s: sel ect/ 2 cdl, or f al se if
the match specification does not match the object tuple.

If Type istrace, the object to match against is to be a list. The function returns { ok, Result, Fl ags,
War ni ngs}, whereResul t isone of the following:

» true if atrace messageisto be emitted
- fal seif atrace messageis not to be emitted
* The message term to be appended to the trace message

FI ags isalist containing all the trace flags to be enabled, currently thisisonly r et urn_t r ace.
Thisisauseful debugging and test tool, especially when writing complicated match specifications.
Seeasoets:test ns/2.

max(Terml, Term2) -> Maximum
Types:
Terml = Term2 = Maximum = term()

Returnsthe largest of Ter mlL and Ter n®. If the terms are equal, Ter il isreturned.

erlang:md5(Data) -> Digest
Types:

Data = iodata()

Digest = binary()

Computes an MD5 message digest from Dat a, where the length of the digest is 128 bits (16 bytes). Dat a isabinary
or alist of small integers and binaries.

140 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

For more information about MD5, see RFC 1321 - The M D5 M essage-Digest Algorithm.

| The MD5 Message-Digest Algorithm is not considered safe for code-signing or software-integrity purposes. |

erlang:md5 final(Context) -> Digest
Types.
Context = Digest = binary()

Finishes the update of an MD5 Cont ext and returns the computed VD5 message digest.

erlang:md5 init() -> Context
Types:
Context = binary()
Creates an MD5 context, to be used in the following callsto nd5_updat e/ 2.

erlang:md5 update(Context, Data) -> NewContext
Types.

Context = binary()

Data = iodata()

NewContext = binary()

Update an MD5 Cont ext with Dat a and returns a NewCont ext .

erlang:memory() -> [{Type, Size}]
Types:
Type = menory_type()
Size = integer() >= 0
memory type() =
total |
processes |
processes used |
system |
atom |
atom used |
binary |
code |
ets |
low |
maximum

Returns a list with information about memory dynamically allocated by the Erlang emulator. Each list element isa
tuple { Type, Size}. Thefirst element Type isan atom describing memory type. The second element Si ze is
the memory sizein bytes.

Memory types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 141

href

erlang

t ot al

Thetotal amount of memory currently allocated. Thisisthe same asthe sum of the memory sizefor pr ocesses
and system

processes
The total amount of memory currently allocated for the Erlang processes.
processes_used

The total amount of memory currently used by the Erlang processes. This is part of the memory presented as
processes memory.

system

Thetotal amount of memory currently allocated for the emulator that is not directly related to any Erlang process.
Memory presented aspr ocesses isnotincludedinthismemory. i nst r urrent (3) canbeusedto get amore
detailed breakdown of what memory is part of thistype.

atom

The total amount of memory currently allocated for atoms. This memory is part of the memory presented as
syst emmemory.

at om used

The total amount of memory currently used for atoms. This memory is part of the memory presented as at om
memory.

bi nary

The total amount of memory currently allocated for binaries. This memory is part of the memory presented as
syst emmemory.

code

The total amount of memory currently allocated for Erlang code. This memory is part of the memory presented
assyst emmemory.

ets

The total amount of memory currently alocated for ETS tables. This memory is part of the memory presented
assyst emmemory.

| ow

Only on 64-bit halfword emulator. The total amount of memory allocated in low memory areasthat are restricted
to < 4 GB, although the system can have more memory.

Can beremoved in afuture release of the halfword emulator.
maxi num

The maximum total amount of memory allocated since the emulator was started. Thistupleis only present when
the emulator is run with instrumentation.

For information on how to run the emulator with instrumentation, see i nst rument (3) and/orer| (1).

142 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The syst emvalueis not complete. Some allocated memory that is to be part of thisvalue is not.

When the emulator isrun with instrumentation, the sy st emvalueis more accurate, but memory directly allocated
for mal | oc (and friends) is still not part of the syst emvalue. Direct callsto mal | oc are only done from OS-
specific runtime libraries and perhaps from user-implemented Erlang drivers that do not use the memory allocation
functionsin the driver interface.

Asthet ot al valueisthesumof pr ocesses andsyst emtheerrorinsyst empropagatestothet ot al vaue.

The different amounts of memory that are summed are not gathered atomically, which introduces an error in the
result.

The different values have the following relation to each other. Values beginning with an uppercase letter is not part
of the result.

total = processes + system

processes = processes used + ProcessesNotUsed

system = atom + binary + code + ets + OtherSystem
atom = atom used + AtomNotUsed

RealTotal = processes + RealSystem

RealSystem = system + MissedSystem

Moretuplesin the returned list can be added in a future release.

Thet ot al valueis supposed to be the total amount of memory dynamically allocated by the emulator. Shared
libraries, the code of the emulator itself, and the emul ator stacks are not supposed to beincluded. That is, thet ot al
valueis not supposed to be equal to the total size of all pages mapped to the emulator.

Also, because of fragmentation and prereservation of memory areas, the size of the memory segments containing
the dynamically allocated memory blocks can be much larger than the total size of the dynamically allocated
memory blocks.

Asfrom ERTS 5.6.4, er | ang: menory/ 0 requiresthat al erts_al | oc(3) alocators are enabled (default
behavior).

Failure: not sup ifanerts_al | oc(3) alocator has been disabled.

erlang:memory(Type :: menory_type()) -> integer() >= 0
erlang:memory(TypeList :: [menory_type()]) ->
[{menory_type(), integer() >= 0}]
Types:
memory type() =

total |

processes |

processes used |

system |

atom |

atom used |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 143

erlang

binary |
code |
ets |
low |
maximum

Returns the memory size in bytes allocated for memory of type Type. The argument can also be specified as a list
of menory_type() aoms, in which case a corresponding list of { menory_type(), Size :: integer
>= 0} tuplesisreturned.

Asfrom ERTS 5.6.4, er | ang: menory/ 1 requiresthat al erts_al | oc(3) alocators are enabled (default
behavior).

Failures:

badar g

If Type isnot one of the memory types listed in the description of er | ang: nenor y/ 0.
badar g

If maxi mumis passed as Ty pe and the emulator is not run in instrumented mode.
not sup

Ifanerts_all oc(3) alocator has been disabled.

Seedsoerl ang: menory/ 0.

min(Terml, Term2) -> Minimum
Types:
Terml = Term2 = Minimum = term()

Returns the smallest of Ter nil and Ter n2. If theterms are equal, Ter ml is returned.

module loaded(Module) -> boolean()
Types:
Module = module()
Returnst r ue if the module Modul e isloaded, otherwisef al se. It does not attempt to load the module.

| This BIF isintended for the code server (see code(3)) and is not to be used elsewhere. |

monitor(Type :: process, Item :: nonitor_process_identifier()) ->
MonitorRef

monitor(Type :: port, Item :: nonitor _port _identifier()) ->
MonitorRef

monitor(Type :: time offset, Item :: clock service) -> MonitorRef

Types:

MonitorRef = reference()
registered name() = atom()
registered process identifier() =

144 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

regi stered_nanme() | {registered_nane(), node()}
monitor process identifier() =

pid() | registered_process_identifier()
monitor port identifier() = port() | registered_nanme()

Sends a monitor request of type Type to the entity identified by | t em If the monitored entity does not exist or it
changes monitored state, the caller of noni t or / 2 is notified by a message on the following format:

{Tag, MonitorRef, Type, Object, Info}

| The monitor request is an asynchronous signal. That is, it takes time before the signal reaches its destination. |

Type can be one of the following atoms: pr ocess, port orti me_of f set.

A process or port monitor istriggered only once, after that it is removed from both monitoring process and the
monitored entity. Monitors are fired when the monitored process or port terminates, does not exist at the moment of
creation, or if the connection to it islost. If the connection toiit islost, we do not know if it still exists. The monitoring
is aso turned off when demonitor/1is called.

A process or port monitor by name resolves the Regi st er edNane to pi d() or port () only once at the
moment of monitor instantiation, later changes to the name registration will not affect the existing monitor.

When apr ocess or port monitor istriggered, a' DOAN message is sent that has the following pattern:
{'DOWN', MonitorRef, Type, Object, Info}

In the monitor message Moni t or Ref and Ty pe are the same as described earlier, and:
bj ect

The monitored entity, which triggered the event. When monitoring alocal process or port, Gbj ect will be equal
tothepi d() or port () that was being monitored. When monitoring process or port by name, Gbj ect will
haveformat { Regi st er edNane, Node} where Regi st er edNamne isthe name which has been used with

moni t or/ 2 call and Node isloca or remote node name (for ports monitored by name, Node is always local
node name).

Info

Either the exit reason of the process, nopr oc (process or port did not exist at the time of monitor creation), or
noconnect i on (no connection to the node where the monitored process resides).

If an attempt is made to monitor a process on an older node (where remote process monitoring is not implemented or
where remote process monitoring by registered name is not implemented), the call failswith badar g.

Theformat of the' DOAN' message changed in ERTS 5.2 (Erlang/OTP R9B) for monitoring by registered name.
Element Obj ect of the' DOAN' message could in earlier versions sometimes be the process identifier of the
monitored process and sometimes be the registered name. Now element Obj ect isalwaysatuple consisting of the
registered name and the node name. Processes on new nodes (ERTS 5.2 or higher versions) always get ' DOVN'

messages on the new format even if they are monitoring processes on old nodes. Processes on old nodes aways
get' DOAN' messages on the old format.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 145

erlang

Monitoring apr ocess

Creates monitor between the current process and another process identified by | t em which can be a pi d()
(local or remote), an atom Regi st er edName or a tuple { Regi st er edNanme, Node} for a registered
process, located el sewhere.

Monitoring apor t

Creates monitor between the current processand aport identified by | t em whichcanbeaport () (only local),
an atom Regi st er edNane or atuple { Regi st eredNane, Node} for aregistered port, located on this
node. Note, that attempt to monitor aremote port will result in badar g.

Monitoringati me_of f set

Monitors changesint i me of f set between Erlang monotonic time and Erlang systemtime. Onevalid | t em
existsincombinationwiththet i ne_of f set Type, namely theatomcl ock_ser vi ce. Noticethat theatom
cl ock_servi ce isnot the registered name of a process. In this case it serves as an identifier of the runtime
system internal clock service at current runtime system instance.

The monitor is triggered when the time offset is changed. This either if the time offset value is changed, or if the
offset is changed from preliminary to final during finalization of the time offset when the single time warp mode
is used. When a change from preliminary to final time offset is made, the monitor is triggered once regardless
of whether the time offset value was changed or not.

If the runtime system isin multi time warp mode, the time offset is changed when the runtime system detects that
the OS system time has changed. The runtime system does, however, not detect thisimmediately when it occurs.
A task checking the time offset is scheduled to execute at |east once a minute, so under normal operation thisis
to be detected within a minute, but during heavy load it can take longer time.

The monitor is not automatically removed after it has been triggered. That is, repeated changes of the time offset
trigger the monitor repeatedly.

When the monitor istriggered a' CHANGE' message is sent to the monitoring process. A ' CHANGE' message
has the following pattern:
{'CHANGE', MonitorRef, Type, Item, NewTimeOffset}

where Moni t or Ref , Type, and | t emare the same as described above, and NewTi mef f set is the new
time offset.

When the ' CHANGE' message has been received you are guaranteed not to retrieve the old time offset when
calling erl ang: ti ne_of f set (). Notice that you can observe the change of the time offset when calling
erlang: tine_of fset () beforeyougetthe' CHANGE' message.

Making several callstononi t or / 2 forthesamel t emand/or Ty pe isnot an error; it resultsin as many independent
monitoring instances.

The monitor functionality is expected to be extended. That is, other Typesand | t ens are expected to be supported
in afuture release.

If or when moni t or / 2 is extended, other possible values for Tag, Qbj ect , and | nf o0 in the monitor message
will be introduced.

monitor node(Node, Flag) -> true
Types:

146 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Node
Flag

Monitor the status of the node Node. If Fl ag ist r ue, monitoring is turned on. If Fl ag isf al se, monitoring is
turned off.

Making several calsto noni t or _node(Node, true) for the same Node isnot an error; it results in as many
independent monitoring instances.

node()
boolean()

If Node fails or does not exist, the message { nodedown, Node} isdelivered to the process. If aprocess has made
two callstononi t or _node(Node, true) and Node terminates, two nodedown messages are delivered to the
process. If there is no connection to Node, an attempt is made to create one. If this fails, anodedown message is
delivered.

Nodes connected through hidden connections can be monitored as any other nodes.

Failure: badar g if thelocal nodeisnot alive.

erlang:monitor node(Node, Flag, Options) -> true

Types.
Node = node()
Flag = boolean()

Options = [Option]
Option = allow passive connect

Behaves as nonitor_node/ 2 except that it alows an extra option to be specified, namely
al | ow_passi ve_connect . This option alows the BIF to wait the normal network connection time-out for the
monitored node to connect itself, even if it cannot be actively connected from this node (that is, it is blocked). The
state where this can be useful can only be achieved by using the Kernel option di st _aut o_connect once. If
that option isnot used, option al | ow_passi ve_connect hasno effect.

Optional | ow_passi ve_connect isused internally and is seldom needed in applications where the network
topology and the Kernel options in effect are known in advance.

Failure: badar g if the local nodeis not alive or the option list is malformed.

erlang:monotonic time() -> integer()

Returns the current Erlang monotonic timein nat i ve time unit. Thisis amonotonically increasing time since some
unspecified point in time.

Thisisa monotonically increasing time, but not a strictly monotonically increasing time. That is, consecutive
calstoer| ang: nonot oni ¢_t i me/ 0 can produce the same result.

Different runtime system instances will use different unspecified pointsin time as base for their Erlang monotonic
clocks. That is, it is pointless comparing monotonic times from different runtime system instances. Different
runtime system instances can also place this unspecified point in time different relative runtime system start. It
can be placed in the future (time at start is a negative value), the past (time at start is a positive value), or the
runtime system start (time at start is zero). The monotonic time at runtime system start can be retrieved by calling
erl ang: systeminfo(start_tine).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 147

erlang

erlang:monotonic time(Unit) -> integer()
Types:
Unit = tine_unit()
Returns the current Erlang monotonic time converted into the Uni t passed as argument.

Same as cdling erl ang: convert tinme_unit(erlang: monotonic_time(), native, Unit),
however optimized for commonly used Uni t s.

erlang:nif error(Reason) -> no_return()
Types:
Reason = term()
Works exactly like er ror/ 1, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a stub

function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer does not generate false
warnings.

erlang:nif error(Reason, Args) -> no return()
Types:
Reason = term()
Args = [term()]
Works exactly like er r or / 2, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a stub

function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer does not generate false
warnings.

node() -> Node
Types:
Node = node()
Returns the name of the local node. If the node is not alive, nonode@ohost isreturned instead.

Allowed in guard tests.

node(Arg) -> Node

Types:
Arg = pid() | port() | reference()
Node = node()

Returns the node where Ar g originates. Ar g can be a process identifier, a reference, or a port. If the local node is
not alive, nonode@ohost isreturned.

Allowed in guard tests.

nodes() -> Nodes
Types.
Nodes = [node()]

Returns alist of all visible nodesin the system, except the local node. Same asnodes(vi si bl e) .

nodes(Arg) -> Nodes
Types:

148 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Arg = NodeType | [NodeType]
NodeType = visible | hidden | connected | this | known
Nodes = [node()]

Returns alist of nodes according to the argument specified. The returned result, when the argument isalist, isthe list
of nodes satisfying the disunction(s) of the list elements.

NodeTypes:
vi si bl e

Nodes connected to this node through normal connections.
hi dden

Nodes connected to this node through hidden connections.
connected

All nodes connected to this node.
this

This node.
known

Nodes that are known to this node. That is, connected nodes and nodes referred to by process
identifiers, port identifiers, and references located on this node. The set of known nodes is
garbage collected. Notice that this garbage collection can be delayed. For more information, see
erl ang: system i nf o(del ayed_node_t abl e_gc) .
Some equalities: [node()] = nodes(this),nodes(connected) = nodes([visible, hidden]),
andnodes() = nodes(visible).

now() -> Timestamp

Types:
Timestamp = tinestanp()
timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

Thisfunction is deprecated. Do not useit.

For more information, see section Time and Time Correction in the User's Guide. Specifically, section Dos and
Dont's describes what to use instead of er | ang: now/ 0.

Returnsthetuple{ MegaSecs, Secs, M croSecs},whichistheelapsedtimesince00:00 GMT, January 1, 1970
(zero hour), if provided by the underlying OS. Otherwise some other point in timeis chosen. It is also guaranteed that
the following calls to this BIF return continuously increasing values. Hence, the return value from er | ang: now/ 0
can be used to generate unique time stamps. If it is called in atight loop on a fast machine, the time of the node can
become skewed.

Can only be used to check the local time of day if the time-zone information of the underlying OS is properly
configured.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 149

erlang

open_port(PortName, PortSettings) -> port()

Types:
PortName =
{spawn, Command :: string() | binary()} |
{spawn _driver, Command :: string() | binary()} |
{spawn_executable, FileName :: file:nanme()} |

{fd, In :: integer() >= 0, Out :: integer() >= 0}
PortSettings = [Opt]
Opt =
{packet, N :: 1 | 2 | 4} |
stream |
{line, L :: integer() >= 0} |
{cd, Dir :: string() | binary()} |
{env, Env :: [{Name :: string(), Val :: string() | false}l} |
{args, [string() | binary()]}
{arg0, string() | binary()} |
exit status |
use stdio |
nouse stdio |
stderr_to stdout |
in |
out |
binary |
eof |
{parallelism, Boolean :: boolean()} |
hide
Returns a port identifier as the result of opening a new Erlang port. A port can be seen as an external Erlang process.

The name of the executable as well as the arguments specifed in cd, env, ar gs, and ar g0 are subject to Unicode
filename trandation if the system is running in Unicode filename mode. To avoid trandation or to force, for example
UTF-8, supply the executable and/or arguments as a binary in the correct encoding. For details, see the module
file(3),thefunctionfil e:native_name_encodi ng/ 0inKernel,andthe Usi ng Uni code i n Erl ang
User's Guide.

The charactersinthename (if specified asalist) can only be> 255 if the Erlang virtual machineisstarted in Unicode
filename trand ation mode. Otherwise the name of the executableis limited to the SO Latin-1 character set.

Por t Nanes:
{spawn, Conmand}

Starts an external program. Command is the name of the external program to be run. Cormand runs outside the
Erlang work space unless an Erlang driver with the name Commrand is found. If found, that driver is started. A
driver runsin the Erlang work space, which meansthat it is linked with the Erlang runtime system.

When starting external programson Solaris, thesystemcall vf or k isusedin preferencetof or k for performance
reasons, athough it has a history of being less robust. If there are problems using vf or k, setting environment
variable ERL_NO VFORK to any value causesf or k to be used instead.

For external programs, PATH is searched (or an equivalent method is used to find programs, depending on the
0S). Thisis done by invoking the shell on certain platforms. The first space-separated token of the command is
considered as the name of the executable (or driver). This (among other things) makes this option unsuitable for

150 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

running programs with spacesin filenames or directory names. If spacesin executable filenames are desired, use
{spawn_execut abl e, Command} instead.

{spawn_driver, Comrand}

Workslike{ spawn, Commuand}, but demandsthefirst (space-separated) token of the command to be the name
of aloaded driver. If no driver with that name is loaded, abadar g error israised.
{spawn_execut abl e, Fil eNane}

Workslike{ spawn, Fi | eNane}, but only runs external executables. Fi | eNan®e initswholeis used asthe
name of the executable, including any spaces. If arguments are to be passed, the Port Setti ngs ar gs and
ar g0 can be used.

The shell isusually not invoked to start the program, it is executed directly. PATH (or equivalent) is not searched.
To find aprogram in PATHto execute, use os: fi nd_execut abl e/ 1.

Only if ashell script or . bat file is executed, the appropriate command interpreter is invoked implicitly, but
thereis still no command-argument expansion or implicit PATH search.

If Fi | eName cannot be run, an error exception is raised, with the POSIX error code as the reason. The error
reason can differ between OSs. Typically the error enoent israised when an attempt is made to run a program
that is not found and eacces israised when the specified file is not executable.

{fd, In, out}

Allows an Erlang process to access any currently opened file descriptors used by Erlang. The file descriptor | n
can be used for standard input, and the file descriptor Qut for standard output. It isonly used for various servers
inthe Erlang OS (shel | and user). Hence, itsuseis limited.

Port Setti ngs isalist of settings for the port. The valid settings are as follows:

{packet, N}

Messages are preceded by their length, sent in N bytes, with the most significant byte first. The valid values for
Narel, 2, and 4.

stream

Output messages are sent without packet lengths. A user-defined protocol must be used between the Erlang
process and the external object.

{line, L}

Messages are delivered on a per line basis. Each line (delimited by the OS-dependent newline sequence) is
delivered in a single message. The message data format is{ Fl ag, Li ne}, where Fl ag iseol or noeol ,
and Li ne isthe data delivered (without the newline sequence).

L specifiesthe maximum linelength in bytes. Lineslonger than this are delivered in more than one message, with
Fl ag set to noeol for al but the last message. If end of file is encountered anywhere else than immediately
following a newline sequence, the last line is also delivered with Fl ag set to noeol . Otherwise lines are
delivered with FI ag settoeol .

The{packet, N} and{line, L} settingsare mutually exclusive.
{cd, Dir}

Only valid for { spawn, Conmand} and { spawn_execut abl e, Fi | eNane}. The external program
startsusing Di r asitsworking directory. Di r must be a string.

{env, Env}

Only valid for { spawn, Command}, and { spawn_execut abl e, Fi | eNane}. The environment of the
started process is extended using the environment specificationsin Env.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 151

erlang

Env isto bealist of tuples{ Nane, Val }, where Nane isthe name of an environment variable, and Val is
the value it is to have in the spawned port process. Both Nare and Val must be strings. The one exception is
Val beingtheatomf al se (in analogy with os: get env/ 1, which removes the environment variable.

{args, [string() | binary()]}

Only valid for { spawn_execut abl e, Fil eNane} and specifies arguments to the executable. Each
argument is specified as a separate string and (on Unix) eventually ends up as one element each in the argument
vector. On other platforms, asimilar behavior is mimicked.

The arguments are not expanded by the shell before they are supplied to the executable. Most notably
this means that file wildcard expansion does not occur. To expand wildcards for the arguments, use
filelib:wldcard/ 1. Noticethatevenif theprogramisaUnix shell script, meaning that the shell ultimately
is invoked, wildcard expansion does not occur, and the script is provided with the untouched arguments. On
Windows, wildcard expansion is always up to the program itself, therefore thisis not an issue.

The executable name (also known as ar gv[0]) is not to be specified in this list. The proper executable name
isautomatically used asar gv[0] , where applicable.

If you explicitly want to set the program name in the argument vector, option ar g0 can be used.

{arg0, string() | binary()}

Only valid for { spawn_execut abl e, Fi |l eNane} and explicitly specifies the program name argument
when running an executable. This can in some circumstances, on some OSs, be desirable. How the program
responds to thisis highly system-dependent and no specific effect is guaranteed.

exit_status

Only vaid for {spawn, Conmand}, where Conmand refers to an external program, and for
{spawn_execut abl e, Fil eNane}.

When the external process connected to the port exits, a message of the form {Port,
{exit_status, Status}} issenttothe connected process, where St at us isthe exit status of the external
process. If the program aborts on Unix, the same convention is used as the shells do (that is, 128+signal).

If option eof is specified also, the messageseof andexi t st at us appear in an unspecified order.
If the port program closesits st dout without exiting, option exi t _st at us does not work.

use_stdio

Only validfor{ spawn, Conmmand} and{spawn_execut abl e, Fi | eNane}.Italowsthestandardinput
and output (file descriptors 0 and 1) of the spawned (Unix) process for communication with Erlang.

nouse_stdio

The opposite of use_st di o. It usesfile descriptors 3 and 4 for communication with Erlang.

stderr_to_stdout

Affects ports to externa programs. The executed program gets its standard error file redirected to its standard
output file. st derr _t o_st dout and nouse_st di o are mutually exclusive.

over |l apped_io

Affects ports to external programs on Windows only. The standard input and standard output handles of the port
program are, if this option is supplied, opened with flag FI LE_FLAG_OVERLAPPED, so that the port program
can (and must) do overlapped 1/0 on its standard handles. Thisis not normally the case for simple port programs,
but an option of value for the experienced Windows programmer. On all other platfor ms, thisoption issilently
discarded.

The port can only be used for input.

152 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

out

The port can only be used for output.
bi nary

All 1/0 from the port is binary data objects as opposed to lists of bytes.
eof

The port is not closed at the end of the file and does not produce an exit signal. Instead, it remains open and a
{Port, eof} messageis sent to the process holding the port.

hi de

When running on Windows, suppresses creation of a new console window when spawning the port program.
(This option has no effect on other platforms.)

{parall elism Bool ean}

Sets scheduler hint for port parallelism. If settot r ue, the virtual machine schedules port tasks; when doing so, it
improves paralelism in the system. If setto f al se, the virtual machinetriesto perform port tasksimmediately,
improving latency at the expense of parallelism. The default can be set at system startup by passing command-
lineargument +spptoerl (1).

Default isst r eamfor all port typesand use_st di o for spawned ports.

Failure: if the port cannot be opened, the exit reasonisbadar g, syst em | i mi t , or the POSIX error code that most
closely describes the error, or ei nval if no POSIX codeis appropriate:

badar g
Bad input argumentsto open_port .
systemlimt
All available portsin the Erlang emulator arein use.
enomem
Not enough memory to create the port.
eagain
No more available OS processes.
enanet ool ong
Too long external command.
enfile
No more available file descriptors (for the OS process that the Erlang emulator runsin).
enfile
Full file table (for the entire OS).
eacces
Conmand specified in{ spawn_execut abl e, Comand} does not point out an executablefile.
enoent
Fi | eNane specifiedin { spawn_execut abl e, Fi |l eName} doesnot point out an existing file.

During use of aport opened using { spawn, Nane},{spawn_driver, Name},or{spawn_execut abl e,
Name}, errors arising when sending messages to it are reported to the owning process using signals of the form
{"EXIT, Port, PosixCode}.Forthepossiblevaluesof Posi xCode, seefil e(3).

The maximum number of ports that can be open at the same time can be configured by passing command-line flag
+Qtoerl (1).

erlang:phash(Term, Range) -> Hash
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 153

erlang

Term = term()
Range = Hash = integer() >=1
Range = 1..2732, Hash = 1..Range
Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture and

ERTSversion (the BIF wasintroduced in ERTS 4.9.1.1). The function returns ahash value for Ter mwithin the range
1. . Range. The maximum value for Range is 2"32.

erlang:phash2(Term) -> Hash
erlang:phash2(Term, Range) -> Hash
Types.

Term = term()

Range = integer() >=1

1.2"32
Hash = integer() >= 0
0..Range-1

Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 5.2). The function returns a hash value for Ter mwithin the range
0. . Range- 1. The maximum value for Range is 232. When without argument Range, a value in the range
0..2°27-1 isreturned.

This BIF is always to be used for hashing terms. It distributes small integers better than phash/ 2, and it is faster
for bignums and binaries.

Notice that therange 0. . Range- 1 isdifferent from the range of phash/ 2, whichis1. . Range.

pid to list(Pid) -> string()
Types:
Pid = pid()
Returns a string corresponding to the text representation of Pi d.

erlang:port call(Port, Operation, Data) -> term()
Types:

Port = port() | atom()

Operation = integer()

Data = term()

Performs a synchronous call to a port. The meaning of Oper at i on and Dat a depends on the port, that is, on the
port driver. Not all port drivers support this feature.

Por t isaport identifier, referring to adriver.

Oper at i on isaninteger, which is passed on to the driver.

Dat a isany Erlang term. This datais converted to binary term format and sent to the port.
Returns aterm from the driver. The meaning of the returned data also depends on the port driver.
Failures:

154 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

badar g
If Por t isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previoudly linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g

If Oper at i on doesnot fit in a 32-bit integer.
badar g

If the port driver does not support synchronous control operations.
badar g

If the port driver so decides for any reason (probably something wrong with Oper at i on or Dat a).

port close(Port) -> true
Types:
Port = port() | atom()

Closes an open port. Roughly thesameasPort | {sel f(), cl ose} exceptfortheerror behavior (see below),
being synchronous, and that the port does not reply with { Port, cl osed}. Any process can close a port with
port cl ose/ 1, notonly the port owner (the connected process). If the calling processislinked to the port identified
by Por t , the exit signal from the port is guaranteed to be delivered before port _cl ose/ 1 returns.

For comparison: Port | {sel f(), cl ose} onlyfailswithbadar g if Port doesnot refer to aport or aprocess.
If Port isaclosed port, nothing happens. If Port isan open port and the calling processis the port owner, the port
replieswith{ Port, cl osed} when al buffers have been flushed and the port really closes. If the calling process
is not the port owner, the port owner failswith badsi g.

Notice that any process can closeaport using Port ! {Port Oamer, cl ose} asifititself wasthe port owner,
but the reply always goes to the port owner.

Asfrom Erlang/OTPR16, Port ! {Port Omer, cl ose} istruly asynchronous. Notice that this operation has
always been documented as an asynchronous operation, while the underlying implementation has been synchronous.
port _cl ose/ 1 ishowever still fully synchronous because of its error behavior.

Failure: badar g if Port isnot an identifier of an open port, or the registered name of an open port. If the calling
process was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

port command(Port, Data) -> true

Types.
Port = port() | atom()
Data = iodatal()

Sends datato aport. SameasPort ! {Port Ower, {comrand, Data}} exceptfor the error behavior and
being synchronous (see below). Any process can send datato aport withport _comand/ 2, not only the port owner
(the connected process).

For comparison: Port ! {Port Ower, {conmand, Data}} onlyfailswithbadar g if Port doesnot refer
to aport or aprocess. If Port isaclosed port, the data message disappears without a sound. If Port is open and
the calling process is not the port owner, the port owner failswith badsi g. The port owner failswith badsi g also
if Dat aisaninvalid /O list.

Notice that any process can send to aport using Port ! {Port Omer, {conmand, Data}} asif ititself
was the port owner.

If the port is busy, the calling process is suspended until the port is not busy any more.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 155

erlang

Asfrom Erlang/OTPR16, Port ! {Port Oaner, {command, Data}} istruly asynchronous. Noticethat this
operation has always been documented as an asynchronous operation, while the underlying implementation has been
synchronous. port _commrand/ 2 is however still fully synchronous because of its error behavior.

Failures:
badar g

If Port isnot an identifier of an open port, or the registered name of an open port. If the calling process was
previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be delivered
beforethisbadar g exception occurs.

badar g
If Dat aisaninvalid /O list.

port _command(Port, Data, OptionList) -> boolean()
Types:
Port = port() | atom()
Data = iodata()
Option = force | nosuspend
OptionList = [Option]
Sendsdatato aport. port _conmmand(Port, Data, []) equalsport command(Port, Data).
If the port command is aborted, f al se isreturned, otherwiset r ue.
If the port is busy, the calling process is suspended until the port is not busy anymore.
Options:

force
The calling processis not suspended if the port is busy, instead the port command is forced through. The call
failswith anot sup exception if the driver of the port does not support this. For more information, see driver
flag ! [CDATA] ERL_DRV_FLAG SOFT_BUSY]] .

nosuspend
The calling process is not suspended if the port is busy, instead the port command isaborted and f al se is
returned.

More options can be added in afuture release. |

Failures:

badar g
If Port isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g

If Dat a isaninvalid I/O list.
badar g

If Opti onLi st isaninvalid option list.
not sup

If option f or ce has been passed, but the driver of the port does not allow forcing through a busy port.

156 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

port connect(Port, Pid) -> true

Types.
Port = port() | atom()
Pid = pid()

Sets the port owner (the connected port) to Pi d. Roughly thesameasPort ! {Oaner, {connect, Pid}}
except for the following:

» Theerror behavior differs, see below.

e Theport doesnot reply with { Por t , connect ed}.

e port_connect/ 1 issynchronous, see below.

e Thenew port owner gets linked to the port.

The old port owner stays linked to the port and must call unl i nk(Por t) if thisisnot desired. Any process can set
the port owner to be any processwith port _connect/ 2.

For comparison: Port ! {self(), {connect, Pid}} onlyfalswithbadar g if Port doesnot refer toa
port or a process. If Port isaclosed port, nothing happens. If Por t isan open port and the calling process is the
port owner, the port replieswith{ Port , connect ed} totheold port owner. Notice that the old port owner is still
linked to the port, while the new is not. If Por t isan open port and the calling processis not the port owner, the port
owner failswith badsi g. The port owner failswith badsi g alsoif Pi d ishot an existing local process identifier.

Notice that any process can set the port owner using Port | {Port Omer, {connect, Pid}} asifititself
was the port owner, but the reply always goes to the port owner.

Asfrom Erlang/OTPR16, Port ! {Port Omer, {connect, Pid}} istruly asynchronous. Notice that this
operation has always been documented as an asynchronous operation, while the underlying implementation has been
synchronous. port _connect / 2 ishowever still fully synchronous because of its error behavior.

Failures:

badar g
If Port isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g
If the processidentified by Pi d isnot an existing local process.

port control(Port, Operation, Data) -> iodata() | binary()
Types:

Port = port() | atom()

Operation = integer()

Data = iodata()

Performs a synchronous control operation on a port. The meaning of Oper at i on and Dat a depends on the port,
that is, on the port driver. Not al port drivers support this control feature.

Returns a list of integers in the range 0..255, or a binary, depending on the port driver. The meaning of the returned
data also depends on the port driver.

Failures:

badar g

If Por t isnot an open port or the registered name of an open port.
badar g

If Oper at i on cannot fit in a32-bit integer.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 157

erlang

badar g
If the port driver does not support synchronous control operations.
badar g
If the port driver so decides for any reason (probably something wrong with Oper at i on or Dat a).

erlang:port info(Port) -> Result

Types:
Port = port() | atom()
ResultItem =

{registered name, RegisteredName :: atom()} |

{id, Index :: integer() >= 0} |

{connected, Pid :: pid()} |

{links, Pids :: [pid()]} |

{name, String :: strlng)} |

{input, Bytes :: integer() >= 0} |

{output, Bytes :: integer() >= 0} |

{os_pid, OsPid :: integer() >= 0 | undefined}
Result = [ResultItem] | undefined

Returns a list containing tuples with information about Por t, or undef i ned if the port is not open. The order
of the tuples is undefined, and al the tuples are not mandatory. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 1 returns
undef i ned.

The result contains information about the following | t erns:

e registered_nane (if the port has aregistered name)

e id

e connected
e links

* name

* input

e output

For more information about the different | t ens, seeport _i nf o/ 2.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: connected) ->
{connected, Pid} | undefined
Types:
Port = port() | atom()
Pid = pid()

Pi d isthe processidentifier of the process connected to the port.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

158 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:port info(Port, Item :: id) -> {id, Index} | undefined
Types:
Port = port() | atom()
Index = integer() >= 0
| ndex istheinternal index of the port. Thisindex can be used to separate ports.
If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port _info(Port, Item :: input) ->
{input, Bytes} | undefined

Types:
Port = port() | atom()
Bytes = integer() >= 0
Byt es isthetotal number of bytes read from the port.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: links) -> {links, Pids} | undefined

Types:
Port = port() | atom()
Pids = [pid()]

Pi ds isalist of the process identifiers of the processes that the port is linked to.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: locking) ->
{locking, Locking} | undefined
Types:
Port = port() | atom()
Locking = false | port level | driver level
Locki ng isone of the following:

« fal se (emulator without SMP support)
e« port_Ievel (port-specific locking)
e driver_|evel (driver-specificlocking)

Notice that these results are highly implementation-specific and can change in a future release.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 159

erlang

If the port identified by Por t isnot open, undef i ned is returned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: memory) ->
{memory, Bytes} | undefined

Types:

Port = port() | atom()

Bytes = integer() >= 0
Byt es isthe total number of bytes allocated for this port by the runtime system. The port itself can have allocated
memory that is not included in Byt es.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: monitors) ->
{monitors, Monitors} | undefined

Types:
Port = port() | atom()
Monitors = [{process, pid()}]
Moni t or s represent processes monitored by this port.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: monitored by) ->
{monitored by, MonitoredBy} | undefined

Types:
Port = port() | atom()
MonitoredBy = [pid()]
Returnslist of pids that are monitoring given port a the moment.
If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Por t isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: name) -> {name, Name} | undefined
Types.

Port = port() | atom()

Name = string()

Narre isthe command name set by open_port/ 2.

160 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: os pid) ->
{os pid, 0sPid} | undefined
Types:
Port = port() | atom()
OsPid = integer() >= 0 | undefined
GsPi d is the process identifier (or equivalent) of an OS process created with open_port ({spawn |

spawn_execut abl e, Conmmand}, Options). If the port is not the result of spawning an OS process, the
valueisundef i ned.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: output) ->
{output, Bytes} | undefined
Types:
Port = port() | atom()
Bytes = integer() >= 0
Byt es is the total number of bytes written to the port from Erlang processes using port _conmand/ 2,
port_conmmand/ 3,orPort ! {Oaner, {command, Data}.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: parallelism) ->
{parallelism, Boolean} | undefined

Types.
Port = port() | atom()
Boolean = boolean()

Bool ean correspondsto the port parallelism hint used by this port. For moreinformation, seeoptionpar al | el i sm
of open_port/ 2.

erlang:port info(Port, Item :: queue size) ->
{queue size, Bytes} | undefined

Types:
Port = port() | atom()
Bytes = integer() >= 0
Byt es isthetotal number of bytes queued by the port using the ERTS driver queue implementation.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 161

erlang

If the port identified by Por t isnot open, undef i ned is returned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port _info(Port, Item :: registered name) ->
{registered name, RegisteredName} |

(1

undefined
Types:
Port = port() | atom()
RegisteredName = atom()
Regi st er edNane isthe registered name of the port. If the port has no registered name, [] isreturned.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

port to list(Port) -> string()
Types:
Port = port()
Returns a string corresponding to the text representation of the port identifier Port .

erlang:ports() -> [port()]
Returns alist of port identifiers corresponding to all the ports existing on the local node.
Notice that an exiting port exists, but is not open.

pre loaded() -> [module()]

Returnsalist of Erlang modulesthat are preloaded in the system. Asall loading of codeis donethrough the file system,
the file system must have been loaded previously. Hence, at least the modulei ni t must be prel oaded.

erlang:process display(Pid, Type) -> true
Types:
Pid = pid()
Type = backtrace
Writes information about the local process Pi d on standard error. The only allowed value for the atom Type is

backt r ace, which shows the contents of the call stack, including information about the call chain, with the current
function printed first. The format of the output is not further defined.

process flag(Flag :: trap exit, Boolean) -> 0ldBoolean
Types:
Boolean = 0ldBoolean = boolean()

Whentrap_exit issettot r ue, exit signalsarrivingto aprocessareconvertedto{' EXI T', From Reason}
messages, which can bereceived asordinary messages. If t r ap_exi t issettof al se, theprocessexitsif it receives

162 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

an exit signal other than nor mal and the exit signal is propagated to its linked processes. Application processes are
normally not to trap exits.

Returns the old value of the flag.
Seeadsoexit/ 2.

process flag(Flag :: error handler, Module) -> OldModule
Types.
Module = OldModule = atom()

Used by a process to redefine the error handler for undefined function calls and undefined registered processes.
Inexperienced users are not to use thisflag, as code auto-l1oading depends on the correct operation of the error handling
module.

Returns the old value of the flag.

process flag(Flag :: min heap size, MinHeapSize) -> OldMinHeapSize
Types:
MinHeapSize = 0ldMinHeapSize = integer() >= 0

Changes the minimum heap size for the calling process.
Returns the old value of the flag.

process flag(Flag :: min bin vheap size, MinBinVHeapSize) ->
0ldMinBinVHeapSize
Types:
MinBinVHeapSize = 0ldMinBinVHeapSize = integer() >= 0

Changes the minimum binary virtual heap size for the calling process.
Returns the old value of the flag.

process flag(Flag :: max heap size, MaxHeapSize) -> OldMaxHeapSize
Types:
MaxHeapSize = OldMaxHeapSize = max_heap_si ze()
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error _logger => boolean()}

Thisflag setsthe maximum heap sizefor the calling process. If MaxHeapSi ze isaninteger, the system default values
forkill anderror_I| ogger areused.

si ze

The maximum size in words of the process. If set to zero, the heap size limit is disabled. badar g is be thrown if
thevalueissmaller than m n_heap_si ze. The size check isonly done when a garbage collection istriggered.

si ze isthe entire heap of the process when garbage collection istriggered. Thisincludes all generational heaps,
the process stack, any messagesthat are considered to be part of the heap, and any extramemory that the garbage
collector needs during collection.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 163

erlang

size is the same as can be retrieved using erl ang: process_i nfo(Pid,
total _heap_si ze), or by adding heap_bl ock_si ze, ol d_heap_bl ock_si ze and nbuf _si ze
from erl ang: process_i nfo(Pi d, garbage_collection_info).

kill

When set to t r ue, the runtime system sends an untrappable exit signal with reason ki | | to the process if the
maximum heap size is reached. The garbage collection that triggered the ki | | is not completed, instead the
process exits as soon as possible. When set to f al se, no exit signal is sent to the process, instead it continues
executing.

If Kill is not defined in the map, the system default will be used. The default system default is t r ue.
It can be changed by either option +hmaxk iner| (1), or erl ang: system fl ag(max_heap_si ze,
MaxHeapSi ze) .

error_| ogger

Whensettot r ue, theruntime system sends amessageto the current err or _| ogger containing details about
the process when the maximum hesp size is reached. One er r or _| ogger report is sent each time the limit
is reached.

If error _| ogger isnot defined in the map, the system default is used. The default system defaultist r ue. It
can be changed by either the option +hmaxel inter| (1) ,or erl ang: system fl ag(max_heap_si ze,
MaxHeapSi ze) .

The heap size of a process is quite hard to predict, especially the amount of memory that is used during the garbage
collection. When contemplating using this option, it is recommended to first run it in production with ki | | set to
fal se andinspect theerr or _| ogger reportsto see what the normal peak sizes of the processesin the system is
and then tune the value accordingly.

process flag(Flag :: message queue data, MQD) -> 0ldMQD
Types:

MQD = 01dMQD = nessage_queue_dat a()

message queue data() = off heap | on heap

This flag determines how messages in the message queue are stored, as follows:
of f _heap

All messages in the message queue will be stored outside of the process heap. Thisimplies that no messagesin
the message queue will be part of a garbage collection of the process.

on_heap

All messages in the message queue will eventually be placed on heap. They can however temporarily be stored
off heap. Thisis how messages always have been stored up until ERTS 8.0.

The default message _queue_dat a process flag is determined by command-line argument +hngd iner | (1) .

If the process potentialy can get many messages in its queue, you are advised to set the flag to of f _heap. This
because agarbage collection with many messages placed on the heap can become extremely expensive and the process
can consume large amounts of memory. Performance of the actual message passing is however generally better when
not using flag of f _heap.

When changing this flag messages will be moved. Thiswork has been initiated but not completed when this function
call returns.

Returns the old value of the flag.

164 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

process flag(Flag :: priority, Level) -> OldLevel
Types.
Level = OldLevel
priority level()

priority_|level ()
low | normal | high | max

Sets the process priority. Level isan atom. Four priority levels exist: | ow, nor mal , hi gh, and max. Default is
nor nal .

| Priority level max isreserved for internal use in the Erlang runtime system, and is not to be used by others. |

Internally in each priority level, processes are scheduled in around robin fashion.

Execution of processes on priority nor mal and | ow are interleaved. Processes on priority | ow are selected for
execution less frequently than processes on priority nor mal .

When runnable processes on priority hi gh exist, no processes on priority | owor nor mal are selected for execution.
Notice however that this does not mean that no processes on priority | ow or nor mal can run when processes are
running on priority hi gh. On the runtime system with SMP support, more processes can be running in parallel than
processes on priority hi gh. That is, al owand ahi gh priority process can execute at the same time.

When runnable processes on priority max exist, no processes on priority | ow, nor mal , or hi gh are selected for
execution. Aswith priority hi gh, processeson lower priorities can execute in parallel with processes on priority max.

Scheduling is pre-emptive. Regardless of priority, a processis pre-empted when it has consumed more than a certain
number of reductions since the last time it was selected for execution.

Do not depend on the scheduling to remain exactly asit is today. Scheduling, at least on the runtime system with
SMP support, is likely to be changed in a future release to use available processor cores better.

There is no automatic mechanism for avoiding priority inversion, such as priority inheritance or priority ceilings.
When using priorities, take thisinto account and handle such scenarios by yourself.

Making callsfrom ahi gh priority processinto code that you has no control over can causethe hi gh priority process
towait for aprocesswith lower priority. That is, effectively decreasing the priority of thehi gh priority processduring
the call. Even if thisis not the case with one version of the code that you have no control over, it can be the case
in a future version of it. This can, for example, occur if a hi gh priority process triggers code loading, as the code
server runson priority nor mal .

Other prioritiesthan nor mal are normally not needed. When other priorities are used, use them with care, especially
priority hi gh. A process on priority hi gh isonly to perform work for short periods. Busy looping for long periods
inahi gh priority process causes most likely problems, asimportant OTP servers run on priority nor mal .

Returns the old value of the flag.

process flag(Flag :: save calls, N) -> OldN
Types:
N = OldN = 0..10000
N must be an integer in the interval 0..10000. If N > 0, call saving is made active for the process. This means that
information about the N most recent global function calls, BIF cals, sends, and receives made by the process are saved

inalist, which can beretrieved withpr ocess_i nf o(Pi d, | ast_cal I s) . A global function call isoneinwhich
the module of the function is explicitly mentioned. Only afixed amount of information is saved, as follows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 165

erlang

* Atuple{Mdul e, Function, Arity} forfunctioncals
e Theatomssend,' recei ve' ,andti meout for sendsandreceives(' r ecei ve' whenamessageisreceived
andti meout when areceive times out)

If N=0, call saving is disabled for the process, which is the default. Whenever the size of the call saving list is s,
its contents are reset.

Returns the old value of the flag.

process flag(Flag :: sensitive, Boolean) -> OldBoolean
Types:
Boolean = OldBoolean = boolean()

Sets or clears flag sensi ti ve for the current process. When a process has been marked as sensitive by calling
process_fl ag(sensitive, true),featuresintheruntime system that can be used for examining the data or
inner working of the process are silently disabled.

Features that are disabled include (but are not limited to) the following:

e Tracing. Trace flags can still be set for the process, but no trace messages of any kind are generated. (If flag
sensi ti ve isturned off, trace messages are again generated if any trace flags are set.)

e Seguential tracing. The sequential trace token is propagated as usual, but no sequential trace messages are
generated.

process_i nfo/ 1, 2 cannot be used to read out the message queue or the process dictionary (both are returned

as empty lists).

Stack back-traces cannot be displayed for the process.

In crash dumps, the stack, messages, and the process dictionary are omitted.

If {save_cal | s, N} hasbeen set for the process, no function calls are saved to the call saving list. (The call saving
list is not cleared. Also, send, receive, and time-out events are still added to the list.)

Returns the old value of the flag.

process flag(Pid, Flag, Value) -> OldValue
Types:

Pid = pid()

Flag = save calls

Value = 0ldValue = integer() >= 0

Sets certain flags for the process Pi d, in the same manner aspr ocess_f | ag/ 2. Returnsthe old value of the flag.
Thevalid valuesfor FI ag are only a subset of those allowed in pr ocess_fl ag/ 2, namely save_cal | s.

Failure: badar g if Pi d isnot alocal process.

process info(Pid) -> Info

Types:
Pid = pid()
Info = [InfoTuple] | undefined
InfoTuple = process_info_result _item)

process info result item() =
{backtrace, Bin :: binary()} |
{binary,

166 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

BinInfo ::
[{integer() >= 0,

integer() >= 0,

integer() >= 0}1} |
{catchlevel, CatchLevel :: integer() >= 0} |
{current_function,
{Module :: module(), Function :: atom(), Arity :: arity()}} |
{current_location,

{Module :: module(),
Function :: atom(),
Arity :: arity(),
Location ::

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}]}} |
{current stacktrace, Stack :: [stack_itenm() 1} |
{dictionary, Dictionary :: [{Key :: term(), Value :: term()}]} |
{error_handler, Module :: module()} |
{garbage collection, GCInfo :: [{atom(), integer() >= 0}]} |
{garbage collection info,
GCInfo :: [{atom(), integer() >= 0}]} |
{group leader, GroupLeader :: pid()} |
{heap size, Size :: integer() >= 0} |
{initial call, mfa()} |
{links, PidsAndPorts :: [pid() | port()1} |
{last calls, false | (Calls :: [mfa()1)} |
{memory, Size :: integer() >= 0} |
{message queue len, MessageQueuelen :: integer() >= 0} |
{messages, MessageQueue :: [term()]} |
{min heap size, MinHeapSize :: integer() >= 0} |
{min_bin vheap size, MinBinVHeapSize :: integer() >= 0} |
{max_heap size, MaxHeapSize :: max_heap_size()} |
{monitored by, Pids :: [pid()]1} |
{monitors,
Monitors ::
[{process | port,
Pid ::
pid() |
port()
{RegName :: atom(), Node :: node()}}1} |
{message queue data, MQD :: nessage_queue_data()} |
{priority, Level :: priority_level()} |
{reductions, Number :: integer() >= 0} |
{registered name, [] | (Atom :: atom())} |
{sequential trace token,
[1 | (SequentialTraceToken :: term())} |
{stack size, Size :: integer() >= 0} |
{status,
Status ::
exiting |
garbage collecting |
waiting |
running |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 167

erlang

runnable |
suspended} |
{suspending,
SuspendeelList :
[{Suspendee :: pid(),
ActiveSuspendCount :: integer() >= 0,
OQutstandingSuspendCount :: integer() >= 0}]} |
{total heap size, Size :: integer() >= 0} |
{trace, InternalTraceFlags :: integer() >= 0} |
{trap_exit, Boolean :: boolean()}

priority level() = low | normal | high | max

stack item() =
{Module :: module(),

Function :: atom(),
Arity :: arity() | (Args :: [term()]),
Location ::

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error logger => boolean()}

message queue data() = off heap | on_heap

Returns a list containing | nf oTupl es with miscellaneous information about the process identified by Pi d, or
undef i ned if the processis not alive.

The order of the | nf oTupl esisundefined and al | nf oTupl esare not mandatory. The | nf oTupl es part of the
result can be changed without prior notice.

Thel nf oTupl eswith the following items are part of the result:

e current_function
e initial _call

e« status

* nessage_queue_| en
* nessages

e links

e dictionary

e trap_exit

e error_handl er

e priority

e group_| eader

e total heap_size
 heap_size

e stack_size

e« reductions

e garbage_collection

168 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If the process identified by Pi d has a registered name, also an | nf oTupl e with item r egi st er ed_nane is
included

For information about specific | nf oTupl es, seepr ocess_i nf o/ 2.

|This BIF isintended for debugging only. For al other purposes, use pr ocess_i nf o/ 2. |

Failure: badar g if Pi d isnot alocal process.

process_info(Pid, Item) -> InfoTuple | [] | undefined
process info(Pid, ItemList) -> InfoTupleList | [] | undefined
Types:
Pid = pid()
ItemList = [Item]
Item = process_info_iten()
InfoTupleList = [InfoTuple]
InfoTuple = process_info_result_iten()
process info item() =
backtrace |
binary |
catchlevel |
current_function |
current_location |
current stacktrace |
dictionary |
error_handler |
garbage collection |
garbage collection info |
group leader |
heap size |
initial call |
links |
last calls |
memory |
message queue len |
messages |
min_heap size |
min_bin vheap size |
monitored by |
monitors |
message queue data |
priority |
reductions |
registered name |
sequential trace token |
stack size |
status |
suspending |
total heap size |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 169

erlang

trace |
trap exit

process info result item() =
{backtrace, Bin :: binary()} |
{binary,
BinInfo ::
[{integer() >= 0,

integer() >= 0,

integer() >= 0}1} |
{catchlevel, CatchLevel :: integer() >= 0} |
{current_function,
{Module :: module(), Function :: atom(), Arity :: arity()}} |
{current_location,

{Module :: module(),
Function :: atom(),
Arity :: arity(),
Location ::

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}]}} |
{current_stacktrace, Stack :: [stack_iten() 1} |
{dictionary, Dictionary :: [{Key :: term(), Value :: term()}]} |
{error_handler, Module :: module()} |
{garbage collection, GCInfo :: [{atom(), integer() >= 0}]} |
{garbage collection info,
GCInfo :: [{atom(), integer() >= 0}]} |
{group_leader, GrouplLeader :: pid()} |
{heap size, Size :: integer() >= 0} |
{initial call, mfa()} |
{links, PidsAndPorts :: [pid() | port()1} |
{last_calls, false | (Calls :: [mfa()])} |
{memory, Size :: integer() >= 0} |
{message queue_ len, MessageQueuelLen :: integer() >= 0} |
{messages, MessageQueue :: [term()]} |
{min_heap size, MinHeapSize :: integer() >= 0} |
{min_bin vheap size, MinBinVHeapSize :: integer() >= 0} |
{max_heap size, MaxHeapSize :: nmax_heap_size()} |
{monitored by, Pids :: [pid()]1} |
{monitors,
Monitors ::
[{process | port,
Pid ::
pid() |
port()
{RegName :: atom(), Node :: node()}}1} |
{message queue data, MQD :: nessage_queue_data() } |
{priority, Level :: priority_level()} |
{reductions, Number :: integer() >= 0} |
{registered name, [] | (Atom :: atom())} |
{sequential trace token,
[1 | (SequentialTraceToken :: term())} |
{stack size, Size :: integer() >= 0} |
{status,

170 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Status
exiting |
garbage collecting |
waiting |
running |
runnable |
suspended} |
{suspending,
SuspendeelList
[{Suspendee :: pid(),
ActiveSuspendCount :: integer() >= 0,
OQutstandingSuspendCount :: integer() >= 0}]} |
{total heap size, Size :: integer() >= 0} |
{trace, InternalTraceFlags :: integer() >= 0} |
{trap _exit, Boolean :: boolean()}
stack item() =
{Module :: module(),
Function :: atom(),
Arity :: arity() |
Location ::
[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}
priority level() = low | normal | high | max
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error logger => boolean()}

message queue data() = off heap | on_heap

Returnsinformation about the processidentified by Pi d, asspecifiedby | t emor | t enlLi st . Returnsundef i ned
if the processisnot alive.

(Args :: [term()]),

If the processis alive and asingle | t emis specified, the returned value is the corresponding | nf oTupl e, unless
Item =: = regi st ered_nane and the process has no registered name. Inthiscase, [] isreturned. This strange
behavior is because of historical reasons, and is kept for backward compatibility.

If 1t enli st isspecified, theresult is| nf oTupl eLi st. Thel nf oTupl esin | nf oTupl eLi st areincluded
with the corresponding | t ens in the same order as the | t ens were included in | t enLi st . Valid | t ens can be
included multipletimesin| t enLi st .

Ifregi st ered_naneispartof | t enLi st and the process hasno nameregistered, a{ r egi st er ed_nane,
[1},1nfoTupl e will beincluded in the resulting | nf oTupl eLi st . This behavior is different when a single
Item =: = regi st ered_nane isspecified, and when pr ocess_i nf o/ 1 isused.

Vaid | nf oTupl eswith corresponding | t ens:
{backtrace, Bin}

Binary Bi n contains the same information as the output from erl ang: process_di spl ay(Pi d,
backtrace).Usebinary to_|ist/1toobtainthestring of characters from the binary.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 171

erlang

{bi nary, Binlnfo}

Bi nl nf o is a list containing miscellaneous information about binaries on the heap of this process. This
I nf oTupl e can be changed or removed without prior notice. In the current implementation Bi nl nf o isalist
of tuples. Thetuples contain; Bi nar yl d, Bi nar ySi ze, Bi nar yRef cCount .

The message queue is on the heap depending on the processflag message_queue_dat a.
{catchl evel, CatchLevel}

Cat chLevel isthe number of currently active catches in this process. This | nf oTupl e can be changed or
removed without prior notice.

{current_function, {Mdule, Function, Arity}}
Modul e, Functi on, Ari t'y isthe current function call of the process.
{current | ocation, {Mdule, Function, Arity, Location}}

Modul e, Functi on, Ari ty is the current function call of the process. Locat i on is alist of two-tuples
describing the location in the source code.

{current _stacktrace, Stack}

Returns the current call stack back-trace (stacktrace) of the process. The stack has the same format as
returned by erl ang: get _stacktrace/ 0. The depth of the stacktrace is truncated according to the
backt race_dept h system flag setting.

{dictionary, Dictionary}

Di cti onary isthe process dictionary.
{error_handl er, Mdul e}

Mbdul e isthe error handler module used by the process (for undefined function calls, for example).
{garbage _col |l ecti on, GClnfo}

GCl nf o isalist containing miscellaneous information about garbage collection for this process. The content of
GCl nf o can be changed without prior notice.

{garbage _coll ection_info, GCl nfo}

GCl nf o isalist containing miscellaneous detailed information about garbage collection for this process. The
content of GCl nf o can be changed without prior notice. For details about the meaning of each item, see
gc_minor_start inerl ang:trace/ 3.

{group_| eader, G ouplLeader}
G ouplLeader isthe group leader for the I/O of the process.
{heap_si ze, Size}

Si ze isthe size in words of the youngest heap generation of the process. This generation includes the process
stack. Thisinformation is highly implementation-dependent, and can change if the implementation changes.

{initial _call, {Mdule, Function, Arity}}
Modul e, Functi on, Ari ty istheinitial function call with which the process was spawned.
{l'i nks, PidsAndPort s}

Pi dsAndPor t s isalist of processidentifiers and port identifiers, with processes or ports to which the process
has alink.

172 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{last_calls, false|Calls}

Thevaueisf al se if call savingisnot activefor the process (see pr ocess_f | ag/ 3). If call savingisactive,
alistisreturned, in which the last element is the most recent called.

{menory, Size}
Si ze isthe sizein bytes of the process. Thisincludes call stack, heap, and internal structures.
{message_queue_l en, MessageQueuelen}

MessageQueueLen isthe number of messages currently in the message queue of the process. Thisisthelength
of thelist MessageQueue returned as theinformation item nessages (see below).

{messages, MessageQueue}
MessageQueue isalist of the messages to the process, which have not yet been processed.
{m n_heap_si ze, M nHeapSi ze}
M nHeapSi ze isthe minimum heap size for the process.
{m n_bin_vheap_size, M nBi nVHeapSi ze}
M nBi nVHeapSi ze isthe minimum binary virtual heap size for the process.
{noni tored_by, Pids}
A list of process identifiers monitoring the process (with noni t or / 2).
{noni tors, Mbnitors}

A list of monitors (started by noni t or / 2) that are activefor the process. For alocal process monitor or aremote
process monitor by a process identifier, the list consists of:

{process, Pid}
Process is monitored by pid.
{process, {RegNane, Node}}
Local or remote process is monitored by name.
{port, Portld}
Local port is monitored by port id.
{port, {RegNane, Node}}
Local port is monitored by name. Please note, that remote port monitors are not supported, so Node will
always be the local node name.

{message_queue_data, MY}

Returnsthe current state of processflag message_queue_dat a. MQDiseither of f _heap oron_heap. For
more information, see the documentation of process_fl ag(nmessage_queue_data, MD).

{priority, Level}

Level is the current priority level for the process. For more information on priorities, see
process_flag(priority, Level).

{reductions, Numnber}

Nunber isthe number of reductions executed by the process.
{regi stered_nane, Aton}

At omisthe registered process name. If the process has no registered name, thistupleis not present in the list.
{sequential trace_token, [] | Sequential TraceToken}

Sequent i al Tr aceToken isthe sequential trace token for the process. This| nf oTupl e can be changed or
removed without prior notice.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 173

erlang

{stack_size, Size}
Si ze isthe stack size, in words, of the process.
{status, Status}
St at us isthe status of the process and is one of the following:
e exiting
e garbage_coll ecting
e wai ti ng (for amessage)
e running
e runnabl e (ready to run, but another process is running)
e suspended (suspended on a"busy" port or by the BIF er | ang: suspend_process/ 1, 2)
{suspendi ng, SuspendeelLi st}

Suspendeeli st is a list of { Suspendee, Act i veSuspendCount ,
CQut st andi ngSuspendCount } tuples. Suspendee is the process identifier of a process that has been, or
is to be, suspended by the process identified by Pi d through the BIF er| ang: suspend_process/ 2 or
erl ang: suspend_process/ 1.

Acti veSuspendCount is the number of times Suspendee has been suspended by Pid.
Qut st andi ngSuspendCount isthe number of not yet completed suspend requests sent by Pi d, that is:

« If ActiveSuspendCount =/= 0, Suspendee iscurrently in the suspended state.

e If Qutstandi ngSuspendCount =/ = 0, option asynchronous of
erl ang: suspend_pr ocess/ 2 has been used and the suspendee has not yet been suspended by Pi d.

Noticethat Act i veSuspendCount and Qut st andi ngSuspendCount are not the total suspend count on
Suspendee, only the parts contributed by Pi d.

{total heap_size, Size}

Si ze isthe total size, in words, of all heap fragments of the process. This includes the process stack and any
unreceived messages that are considered to be part of the heap.

{trace, Internal TraceFl ags}

I nt ernal Tr aceFl ags is an integer representing the internal trace flag for this process. This| nf oTupl e
can be changed or removed without prior notice.

{trap_exit, Bool ean}

Bool ean ist r ue if the processis trapping exits, otherwisef al se.
Notice that not all implementations support all these | t ens.
Failures:

badar g

If Pi disnot aloca process.
badar g

If I t emisaninvaiditem.

processes() -> [pid()]
Returns alist of processidentifiers corresponding to all the processes currently existing on the local node.

Noticethat an exiting process exists, but isnot alive. That is,i s_process_al i ve/ 1 returnsf al se for an exiting
process, but its process identifier is part of the result returned from pr ocesses/ 0.

Example:

174 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> processes().
[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]

purge module(Module) -> true
Types:
Module = atom()

Removes old code for Modul e. Before this BIF isused, check_process_code/ 2isto be called to check that
no processes execute old code in the module.

Warning:

This BIF isintended for the code server (see code(3)) and is not to be used elsewhere.

Note:

Asfrom ERTS8.0 (Erlang/OTP 19), any lingering processesthat still executethe old codeiskilled by thisfunction.
In earlier versions, such incorrect use could cause much more fatal failures, like emulator crash.

Failure: badar g if thereis no old code for Mbdul e.

put(Key, Val) -> term()
Types:
Key = Val = term()

Adds a new Key to the process dictionary, associated with the value Val , and returns undef i ned. If Key exists,
the old value is deleted and replaced by Val , and the function returns the old value. Example:

> X = put(name, walrus), Y = put(name, carpenter),
Z = get(name),

{X, Y, Z}.

{undefined,walrus,carpenter}

Note:

The values stored when put is evaluated within the scope of acat ch are not retracted if at hr owis evaluated,
or if an error occurs.

erlang:raise(Class, Reason, Stacktrace) -> no return()
Types.

Class = error | exit | throw

Reason = term()

Stacktrace = rai se_stacktrace()

raise stacktrace() =
[{module(), atom(), arity() | [term()1} |
{function(), [term()]}] |
[{module(), atom(), arity() | [term()], [{atom(), term()}1} |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 175

erlang

{function(), [term()], [{atom(), term()}1}]

Stops the execution of the calling process with an exception of the specified class, reason, and call stack backtrace
(stacktrace).

Cl assiserror,exit,orthrow So, if it were not for the stacktrace, er | ang: rai se(d ass, Reason,
St acktrace) isequivalenttoer| ang: Cl ass(Reason).

Reason isany term. St ackt race isalist as returned from get _st ackt race(), that is, alist of four-tuples
{Mobdul e, Function, Arity | Args, Location},where Modul e and Functi on are atoms, and the
third element is an integer arity or an argument list. The stacktrace can also contain { Fun, Args, Locati on}
tuples, where Fun isalocal fun and Ar gs isan argument list.

Element Locat i on at the end is optional. Omitting it is equivalent to specifying an empty list.

The stacktrace is used as the exception stacktrace for the calling process; it is truncated to the current maximum
stacktrace depth.

As evaluating this function causes the process to terminate, it has no return value unless the arguments are invalid,
in which case the function returns the error reason badar g. If you want to be sure not to return, you can call
error(erlang:rai se(d ass, Reason, Stacktrace)) andhopeto distinguish exceptionslater.

erlang:read timer(TimerRef) -> Result
Types:
TimerRef = reference()
Time = integer() >= 0
Result = Time | false
Reads the state of atimer. Thesameascallinger| ang: read_ti mer (Ti nerRef, []).

erlang:read timer(TimerRef, Options) -> Result | ok
Types:

TimerRef = reference()

Async = boolean()

Option = {async, Async}

Options = [Option]

Time = integer() >= 0

Result = Time | false

Reads the state of a timer that has been created by either erl ang: start _ti mer or erl ang: send_after.
Ti mer Ref identifiesthe timer, and was returned by the BIF that created the timer.

Opt i ons:
{async, Async}

Asynchronous request for state information. Async defaults to f al se, which causes the operation to be
performed synchronoudly. In this case, the Resul t isreturned by er | ang: read_t i mer. When Async is
true,erl ang: read_ti mer sendsan asynchronousrequest for the state information to the timer service that
manages the timer, and then returns ok. A message ontheformat { read_ti mer, Ti mer Ref, Result}
issenttothecaller of er | ang: read_t i mer when the operation has been processed.

More Opt i ons can be added in the future.
If Resul t isaninteger, it represents the time in milliseconds left until the timer expires.

176 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If Resul t isfal se, atimer corresponding to Ti mer Ref could not be found. This because the timer had expired,
or been canceled, or because Ti mer Ref never has corresponded to atimer. Even if the timer has expired, it does not
tell you whether or not the time-out message has arrived at its destination yet.

The timer service that manages the timer can be co-located with another scheduler than the scheduler that the
calling process is executing on. If so, communication with the timer service takes much longer time than if it is
located locally. If the calling processisin acritical path, and can do other things while waiting for the result of this
operation, you want to use option{ async, true}.If usingoption{async, fal se},thecallingprocessis
blocked until the operation has been performed.

Seeasoerl ang: send_after/4, erlang: start _timer/4,and erl ang: cancel _tiner/2.

ref to list(Ref) -> string()
Types.
Ref = reference()
Returns a string corresponding to the text representation of Ref .

This BIF isintended for debugging and is not to be used in application programs.

register(RegName, PidOrPort) -> true
Types.

RegName = atom()

PidOrPort = port() | pid()

Associates the name RegNane with a process identifier (pid) or a port identifier. RegNarre, which must be an atom,
can be used instead of the pid or port identifier in send operator (RegNane ! Message). Example:

> register(db, Pid).
true

Failures:

badar g
If Pi dOr Port isnot an existing local process or port.
badar g
If RegNane isalready in use.
badar g
If the process or port is aready registered (already has a name).
badar g
If RegNane istheatom undef i ned.

registered() -> [RegName]
Types:
RegName = atom()
Returns alist of names that have been registered using r egi st er / 2, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 177

erlang

> registered().
[code server, file server, init, user, my db]

erlang:resume process(Suspendee) -> true
Types:
Suspendee = pid()
Decreases the suspend count on the process identified by Suspendee. Suspendee is previously to have been
suspended through erl ang: suspend_process/ 2 or erl ang: suspend_process/ 1 by the process

cadling erl ang: r esume_pr ocess(Suspendee) . When the suspend count on Suspendee reaches zero,
Suspendee isresumed, that is, its state is changed from suspended into the state it had before it was suspended.

| This BIF isintended for debugging only. |

Failures:

badar g
If Suspendee isnot aprocessidentifier.
badar g
If the process calling er | ang: r esume_pr ocess/ 1 had not previously increased the suspend count on the
processidentified by Suspendee.
badar g
If the processidentified by Suspendee isnot alive.

round (Number) -> integer()
Types:
Number = number()
Returns an integer by rounding Nurber , for example:

round(5.5) .
6

Allowed in guard tests.

self() -> pid()

Returns the process identifier of the calling process, for example:

> self().
<0.26.0>

Allowed in guard tests.

erlang:send(Dest, Msg) -> Msg

Types:
Dest = dst ()
Msg = term()
dst() =

178 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

pid() |

port() |

(RegName :: atom()) |

{RegName :: atom(), Node :: node()}

Sends a message and returns Msg. ThisisthesameasDest ! Msg.

Dest can be a remote or local process identifier, a (local) port, a locally registered name, or a tuple { RegNane,
Node} for aregistered name at another node.

erlang:send(Dest, Msg, Options) -> Res

Types:
Dest = dst ()
Msg = term()

Options = [nosuspend | noconnect]
Res = ok | nosuspend | noconnect

port() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

Either sends a message and returns ok, or does not send the message but returns something else
(see below). Otherwise the same as erl ang: send/ 2. For more detailed explanation and warnings, see
erl ang: send_nosuspend/ 2, 3.

Options:

nosuspend
If the sender would have to be suspended to do the send, nosuspend isreturned instead.
noconnect
If the destination node would have to be auto-connected to do the send, noconnect isreturned instead.

Aswither| ang: send_nosuspend/ 2, 3: use with extreme care. |

erlang:send after(Time, Dest, Msg) -> TimerRef
Types:

Time = integer() >= 0

Dest = pid() | atom()

Msg = term()

TimerRef = reference()

Startsatimer. Thesameascalling erl ang: send_after (Ti me, Dest, Mg, []).

erlang:send after(Time, Dest, Msg, Options) -> TimerRef
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 179

erlang

Time = integer()
Dest = pid() | atom()
Msg = term()

Options = [Option]

Abs = boolean()

Option = {abs, Abs}
TimerRef = reference()

Starts a timer. When the timer expires, the message Msg is sent to the process identified by Dest . Apart from the
format of the time-out message, this function works exactly as er | ang: start _ti ner/ 4.

erlang:send nosuspend(Dest, Msg) -> boolean()
Types:

Dest = dst()
Msg = term()
dst() =

port()
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

The same as er| ang: send(Dest, Mg, [nosuspend]), butreturnstrue if the message was sent and
f al se if the message was not sent because the sender would have had to be suspended.

Thisfunction isintended for send operations to an unreliable remote node without ever blocking the sending (Erlang)
process. If the connection to the remote node (usualy not a real Erlang node, but a node written in C or Java) is
overloaded, this function does not send the message and returnsf al se.

The same occurs if Dest refersto alocal port that is busy. For al other destinations (allowed for the ordinary send
operator ' | '), thisfunction sends the message and returnst r ue.

This function is only to be used in rare circumstances where a process communicates with Erlang nodes that can
disappear without any trace, causing the TCP buffers and the drivers queue to be over-full before the node is shut
down (because of tick time-outs) by net _ker nel . The normal reaction to take when this occurs is some kind of
premature shutdown of the other node.

Notice that ignoring the return value from this function would result in an unreliable message passing, which is
contradictory to the Erlang programming model. The message is not sent if thisfunction returnsf al se.

In many systems, transient states of overloaded queues are normal. Although this function returns f al se does not
mean that the other node is guaranteed to be non-responsive, it could be a temporary overload. Also, a return value
of t r ue does only mean that the message can be sent on the (TCP) channel without blocking; the message is not
guaranteed to arrive at the remote node. For a disconnected non-responsive node, the return valueist r ue (mimics
the behavior of operator !). The expected behavior and the actions to take when the function returns f al se are
application- and hardware-specific.

‘ Use with extreme care. ‘

erlang:send nosuspend(Dest, Msg, Options) -> boolean()
Types:

180 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Dest = dst ()
Msg = term()
Options = [noconnect]
dst() =
pid() |
port() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

Thesameaser| ang: send(Dest, Mg, [nosuspend | Options]), butwithaBoolean returnvaue.

Thisfunction behaveslike er | ang: send_nosuspend/ 2, but takes a third parameter, alist of options. The only
optionisnoconnect , which makes the function return f al se if the remote node is not currently reachable by the
local node. The normal behavior isto try to connect to the node, which can stall the process during a short period.
The use of option noconnect makes it possible to be sure not to get the slightest delay when sending to a remote
process. Thisis especially useful when communicating with nodes that expect to aways be the connecting part (that
is, nodes writtenin C or Java).

Whenever the function returnsf al se (either when a suspend would occur or when noconnect was specified and
the node was not aready connected), the message is guaranteed not to have been sent.

‘ Use with extreme care. ‘

erlang:set cookie(Node, Cookie) -> true
Types:
Node = node()
Cookie = atom()
Sets the magic cookie of Node to the atom Cooki e. If Node is the local node, the function also sets the cookie

of all other unknown nodes to Cooki e (see section Distributed Erlang in the Erlang Reference Manual in System
Documentation).

Failure: f uncti on_cl ause if thelocal nodeisnot alive.

setelement(Index, Tuplel, Value) -> Tuple2
Types:

Index = integer() >=1

1..tuple size(Tuplel

Tuplel = Tuple2 = tuple()

Value = term()

Returns atuple that is a copy of argument Tupl el with the element specified by integer argument | ndex (the first
element is the element with index 1) replaced by argument VVal ue, for example:

> setelement(2, {10, green, bottles}, red).
{10, red,bottles}

size(Item) -> integer() >= 0
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 181

erlang

Item = tuple() | binary()

Returns the number of elementsin atuple or the number of bytesin abinary or bitstring, for example:

> size({morni, mulle, bwange}).
3

> size(<<1l, 22, 33>>).

3

For bitstrings, the number of whole bytesis returned. That is, if the number of bits in the bitstring is not divisible by
8, the resulting number of bytesis rounded down.

Allowed in guard tests.
Seeasotupl e_size/1,byte_size/1l,andbit_size/l.

spawn(Fun) -> pid()
Types:
Fun = function()

Returnsthe processidentifier of anew process started by the application of Fun to theempty list[] . Otherwise works
likespawn/ 3.

spawn(Node, Fun) -> pid()
Types:

Node = node()

Fun = function()

Returns the process identifier of a new process started by the application of Fun to the empty list[] on Node. If
Node does not exist, auseless pid is returned. Otherwise works like spawn/ 3.

spawn (Module, Function, Args) -> pid()
Types.
Module = module()
Function = atom()
Args = [term()]
Returns the process identifier of a new process started by the application of Modul e: Functi on to Ar gs.
error _handl er: undefi ned_function(Mdul e, Function, Args) isevaluated by the new process
if Modul e: Function/ Arity does not exist (where Arity is the length of Args). The error handler can

be redefined (see process_fl ag/ 2). If error _handl er is undefined, or the user has redefined the default
error _handl er and itsreplacement isundefined, afailure with reason undef occurs.

Example:

> spawn(speed, regulator, [high speed, thin cut]).
<0.13.1>

spawn (Node, Module, Function, Args) -> pid()
Types.

182 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Node = node()
Module = module()
Function = atom()
Args = [term()]

Returns the process identifier (pid) of a new process started by the application of Modul e: Funct i on to Ar gs on
Node. If Node does not exist, auseless pid is returned. Otherwise works like spawn/ 3.

spawn_link(Fun) -> pid()
Types:
Fun = function()

Returnsthe processidentifier of a new process started by the application of Fun totheempty list[] . A link is created
between the calling process and the new process, atomically. Otherwise works like spawn/ 3.

spawn_link(Node, Fun) -> pid()
Types:
Node = node()
Fun = function()
Returns the process identifier (pid) of a new process started by the application of Fun to the empty list[] on Node.
A link is created between the calling process and the new process, atomically. If Node does not exist, a useless

pid is returned and an exit signal with reason noconnect i on is sent to the calling process. Otherwise works like
spawn/ 3.

spawn link(Module, Function, Args) -> pid()
Types:

Module = module()

Function = atom()

Args = [term()]

Returns the process identifier of a new process started by the application of Modul e: Functi onto Args. Alinkis
created between the calling process and the new process, atomically. Otherwise works like spawn/ 3.

spawn_link(Node, Module, Function, Args) -> pid()
Types:
Node = node()
Module = module()
Function = atom()
Args = [term()]
Returns the process identifier (pid) of a new process started by the application of Modul e: Funct i on to Ar gs on
Node. A link is created between the calling process and the new process, atomically. If Node does not exist, a useless

pid is returned and an exit signal with reason noconnect i on is sent to the calling process. Otherwise works like
spawn/ 3.

spawn_monitor(Fun) -> {pid(), reference()}
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 183

erlang

Fun = function()

Returnsthe processidentifier of anew process, started by the application of Fun to theempty list[] , and areference
for amonitor created to the new process. Otherwise works like spawn/ 3.

spawn_monitor(Module, Function, Args) -> {pid(), reference()}
Types:

Module = module()

Function = atom()

Args = [term()]

A new process is started by the application of Modul e: Funct i on to Ar gs. The processis monitored at the same
time. Returns the process identifier and a reference for the monitor. Otherwise works like spawn/ 3.

spawn_opt(Fun, Options) -> pid() | {pid(), reference()}
Types:
Fun = function()
Options = [spawn_opt_option()]
priority level() = low | normal | high | max
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error_logger => boolean()}
message queue data() = off heap | on_heap
spawn_opt option() =
link |
monitor |
{priority, Level :: priority_level ()} |
{fullsweep after, Number :: integer() >= 0} |

{min heap size, Size :: integer() >= 0} |

{min bin vheap size, VSize :: integer() >= 0} |
{max heap size, Size :: max_heap_size()} |
{message queue data, MQD :: nessage_queue_data() }

Returns the processidentifier (pid) of anew process started by the application of Fun to the empty list[] . Otherwise
workslike spawn_opt / 4.

If optionmoni t or isspecified, the newly created processis monitored, and both the pid and reference for the monitor
are returned.

spawn_opt(Node, Fun, Options) -> pid() | {pid(), reference()}
Types:

Node = node()

Fun = function()

Options = [spawn_opt _option()]

priority level() = low | normal | high | max

max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,

184 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

kill => boolean(),
error_logger => boolean()}
message queue data() = off _heap | on_heap
spawn_opt option() =
link |
monitor |
{priority, Level :: priority_level()} |
{fullsweep after, Number :: integer() >= 0} |

{min _heap size, Size :: integer() >= 0} |

{min bin vheap size, VSize :: integer() >= 0} |
{max_heap size, Size :: max_heap_size()} |
{message queue data, MQD :: nessage_queue_data() }

Returns the process identifier (pid) of anew process started by the application of Fun to the empty list[] on Node.

If Node does not exist, auseless pid is returned. Otherwise works like spawn_opt / 4.

spawn_opt(Module, Function, Args, Options) ->
pid() | {pid(), reference()}
Types:
Module = module()
Function = atom()
Args = [term()]
Options = [spawn_opt _option()]
priority level() = low | normal | high | max
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error_logger => boolean()}
message queue data() = off heap | on_heap
spawn_opt option() =
link |
monitor |
{priority, Level :: priority_level()} |
{fullsweep after, Number :: integer() >= 0} |

{min heap size, Size :: integer() >= 0} |
{min_bin vheap size, VSize :: integer() >= 0} |
{max_heap size, Size :: max_heap_size()} |
{message queue data, MQD :: nessage_queue_data() }

Works as spawn/ 3, except that an extra option list is specified when creating the process.

If optionnoni t or isspecified, the newly created processis monitored, and both the pid and reference for the monitor

are returned.
Options:
l'i nk
Setsalink to the parent process (like spawn_| i nk/ 3 does).
noni t or

Monitors the new process (like moni t or / 2 does).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 185

erlang

{priority, Level

Sets the priority of the new process. Equivalent to executing process_flag(priority, Level) inthe
start function of the new process, except that the priority is set before the processis selected for execution for the
first time. For more information on priorities, see process_flag(priority, Level).

{full sweep_after, Number}

Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

The Erlang runtime system uses a generational garbage collection scheme, using an "old heap" for data that
has survived at least one garbage collection. When there is no more room on the old heap, a fullsweep garbage
collection is done.

Option f ul | sweep_aft er makes it possible to specify the maximum number of generational collections
before forcing a fullsweep, even if thereis room on the old heap. Setting the number to zero disables the general
collection algorithm, that is, all live datais copied at every garbage collection.

A few cases when it can be useful to changef ul | sweep_after:

« If binariesthat are no longer used are to be thrown away as soon as possible. (Set Nunber to zero.)
* A process that mostly have short-lived data is fullsweeped seldom or never, that is, the old heap contains
mostly garbage. To ensure a fullsweep occasionally, set Nunber to asuitable value, such as 10 or 20.
¢ In embedded systems with alimited amount of RAM and no virtual memory, you might want to preserve
memory by setting Nunber to zero. (The value can be set globally, see er | ang: system fl ag/ 2.)
{m n_heap_si ze, Size}

Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

Gives a minimum heap size, in words. Setting this value higher than the system default can speed up some
processes because less garbage collection is done. However, setting atoo high value can waste memory and slow
down the system because of worse data locality. Therefore, use this option only for fine-tuning an application
and to measure the execution time with various Si ze values.

{m n_bin_vheap_size, VSize}

Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

Gives aminimum binary virtual heap size, in words. Setting this value higher than the system default can speed
up some processes because less garbage collection is done. However, setting atoo high value can waste memory.
Therefore, use this option only for fine-tuning an application and to measure the execution time with various
VSi ze values.

{max_heap_si ze, Size}

Sets the max_heap_size process flag. The default nax_heap_size is determined by
command-line argument +hmax in erl (1). For more information, see the documentation of
process_fl ag(max_heap_si ze, Size).

{message_queue_data, MY}

Sets the state of the message_queue_dat a process flag. MQD isto be either of f _heap or on_heap. The
default nessage _queue_dat a process flag is determined by command-line argument +hngd iner| (1) .
For more information, see the documentation of process_fl ag(message_queue_data, MD).

spawn_opt(Node, Module, Function, Args, Options) ->

186 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

pid() | {pid(), reference()}
Types:
Node = node()
Module = module()
Function = atom()
Args = [term()]
Options = [spawn_opt _option()]
priority level() = low | normal | high | max
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error logger => boolean()}
message queue data() = off heap | on_heap
spawn_opt option() =
link |
monitor |
{priority, Level :: priority_level()} |
{fullsweep after, Number :: integer() >= 0} |

{min heap size, Size :: integer() >= 0} |

{min bin vheap size, VSize :: integer() >= 0} |
{max_heap size, Size :: max_heap_size()} |
{message queue data, MQD :: nmessage_queue_data() }

Returns the process identifier (pid) of a new process started by the application of Modul e: Funct i on to Ar gs on
Node. If Node does not exist, a useless pid is returned. Otherwise works like spawn_opt / 4.

|OpﬂonnDnitorisnotamponajbyspamn_opt/5. |

split binary(Bin, Pos) -> {binary(), binary()}

Types.
Bin = binary()
Pos = integer() >= 0

0..byte size(Bin)

Returns a tuple containing the binaries that are the result of splitting Bi n into two parts at position Pos. Thisisnot a
destructive operation. After the operation, there are three binaries altogether. Example:

> B = list to binary("0123456789").
<<"0123456789">>

> byte size(B).

10

> {B1, B2} = split binary(B,3).
{<<"012">>,<<"3456789">>}

> byte size(Bl).

3

> byte size(B2).
7

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 187

erlang

erlang:start timer(Time, Dest, Msg) -> TimerRef

Types.
Time = integer() >= 0
Dest = pid() | atom()

Msg = term()
TimerRef = reference()

Startsatimer. Thesameascalling erl ang: start _tiner(Ti me, Dest, Mg, []).

erlang:start timer(Time, Dest, Msg, Options) -> TimerRef

Types:
Time = integer()
Dest = pid() | atom()
Msg = term()

Options = [Option]

Abs = boolean()

Option = {abs, Abs}
TimerRef = reference()

Startsatimer. When thetimer expires, themessage{t i neout, Ti ner Ref, Msg} issenttotheprocessidentified
by Dest .

Options:
{abs, false}

This is the default. It means the Ti ne value is interpreted as a time in milliseconds relative current Erlang
monotonic time.

{abs, true}
Absolute Ti e value. The Ti e value isinterpreted as an absolute Erlang monotonic time in milliseconds.
More Opt i ons can be added in the future.

The absolute point in time, the timer is set to expire on, must be in the interval |
erl ang: systeminfo(start_tine), erlang: systeminfo(end_tine)]. If areative time is
specified, the Ti e valueis not allowed to be negative.

If Dest isapid(), it must beapi d() of aprocess created on the current runtime system instance. This process
has either terminated or not. If Dest isanat on() , it isinterpreted as the name of alocally registered process. The
process referred to by the name is looked up at the time of timer expiration. No error is returned if the name does
not refer to a process.

If Dest isapi d(), thetimer is automatically canceled if the process referred to by the pi d() isnot aive, or if
the process exits. Thisfeature was introduced in ERTS 5.4.11. Notice that timers are not automatically canceled when
Dest isanat on() .

Seeasoerl ang: send_after/ 4, erl ang: cancel _tinmer/2,and erl ang: read_tiner/ 2.
Failure: badar g if the arguments do not satisfy the requirements specified here.

statistics(Item :: active tasks) -> [ActiveTasks]
Types:

188 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

ActiveTasks = integer() >= 0

Returnsthesameas st ati stics(acti ve_t asks_al |) with the exception that no information about the dirty
IO run queue and its associated schedulersis part of the result. That is, only tasks that are expected to be CPU bound
are part of the result.

statistics(Item :: active tasks all) -> [ActiveTasks]
Types:
ActiveTasks = integer() >= 0

Returns a list where each element represents the amount of active processes and ports on each run queue and its
associated schedulers. That is, the number of processes and portsthat are ready to run, or are currently running. Values
for normal run queues and their associated schedulersarelocated first in theresulting list. Thefirst element corresponds
to scheduler number 1 and so on. If support for dirty schedulers exist, an element with the value for the dirty CPU
run gueue and its associated dirty CPU schedulers follow and then as last element the value for the the dirty 10 run
gueue and its associated dirty 10 schedulers follow. The information is not gathered atomically. That is, the result is
not necessarily a consistent snapshot of the state, but instead quite efficiently gathered.

Each normal scheduler has one run queue that it manages. If dirty schedulers schedulers are supported, all dirty
CPU schedulers share one run queue, and al dirty 10 schedulers share one run queue. That is, we have multiple
normal run queues, one dirty CPU run queue and one dirty 10 run queue. Work can not migrate between the
different types of run queues. Only work in normal run queues can migrate to other normal run queues. This has
to be taken into account when evaluating the resuilt.

See adso statistics(total _active_tasks), statistics(run_queue_l engths),
statistics(run_queue_lengths all), statistics(total _run_queue_| engths), and
statistics(total _run_queue_ |l engths all).

statistics(Item :: context switches) -> {ContextSwitches, 0}
Types.

ContextSwitches = integer() >= 0
Returns the total number of context switches since the system started.

statistics(Item :: exact reductions) ->
{Total Exact Reductions,
Exact Reductions Since Last Call}

Types:
Total Exact Reductions = Exact Reductions Since Last Call = integer() >= 0

Returns the number of exact reductions.

statistics(exact_reductions) isamoreexpensive operation than statistics(reductions), especially on
an Erlang machine with SMP support.

statistics(Item :: garbage collection) ->

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 189

erlang

{Number of GCs, Words Reclaimed, 0}
Types:
Number of GCs = Words Reclaimed = integer() >= 0

Returns information about garbage collection, for example:

> statistics(garbage collection).
{85,23961,0}

Thisinformation can be invalid for some implementations.

statistics(Item :: io) -> {{input, Input}, {output, Output}}
Types:
Input = OQutput = integer() >= 0

Returns | nput , which is the total number of bytes received through ports, and Qut put , which is the total humber
of bytes output to ports.

statistics(Item :: microstate accounting) ->

[MSAcc Thread] | undefined
Types:
MSAcc Thread =
#{type := MSAcc Thread Type,
id := MSAcc Thread Id,
counters := MSAcc Counters}

MSAcc Thread Type = scheduler | async | aux
MSAcc Thread Id = integer() >= 0
MSAcc Counters = #{MSAcc Thread State => integer() >= 0}

MSAcc_Thread State =
alloc |
aux |
bif |
busy wait |
check io |
emulator |
ets |
gc |
gc_fullsweep |
nif |
other |
port |
send |
sleep |
timers

Microstate accounting can be used to measure how much time the Erlang runtime system spends doing various tasks.
It isdesigned to be as lightweight as possible, but some overhead exists when thisis enabled. Microstate accounting is
meant to be a profiling tool to help finding performance bottlenecks. Tost ar t /st op/r eset microstate accounting,
usesystem flag ni cr ost at e_accounti ng.

190 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

statistics(nicrostate_accounting) returns alist of maps representing some of the OS threads within
ERTS. Each map containst ype and i d fields that can be used to identify what thread it is, and also a counters field
that contains data about how much time has been spent in the various states.

Example:

> erlang:statistics(microstate accounting).
[#{counters => #{aux => 1899182914,
check io => 2605863602,
emulator => 45731880463,
gc => 1512206910,
other => 5421338456,
port => 221631,
sleep => 5150294100},
id => 1,
type => scheduler}|...]

The time unit is the same as returned by os: perf _count er/ 0. So, to convert it to milliseconds, you can do
something like this:

lists:map(
fun(#{ counters := Cnt } = M) ->
MsCnt = maps:map(fun(_ K, PerfCount) ->
erlang:convert time unit(PerfCount, perf counter, 1000)
end, Cnt),
M#{ counters := MsCnt }
end, erlang:statistics(microstate accounting)).

Notice that these values are not guaranteed to be the exact time spent in each state. This is because of various
optimisation done to keep the overhead as small as possible.

MBAcc_Thread_Types:

schedul er
The main execution threads that do most of the work.
dirty cpu_schedul er
The threads for long running cpu intensive work.
dirty io_schedul er
The threads for long running I/O work.
async
Async threads are used by various linked-in drivers (mainly the file drivers) do offload non-CPU intensive
work.
aux
Takes care of any work that is not specifically assigned to a scheduler.

The following MSAcc_Thr ead_St at esare available. All states are exclusive, meaning that a thread cannot bein
two states at once. So, if you add the numbers of all countersin athread, you get the total runtime for that thread.

aux
Time spent handling auxiliary jobs.

check _io
Time spent checking for new 1/0 events.

emul at or
Time spent executing Erlang processes.

gc
Time spent doing garbage collection. When extra states are enabled thisis the time spent doing non-full sweep
garbage collections.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 191

erlang

ot her

Time spent doing unaccounted things.
port

Time spent executing ports.
sl eep

Time spent sleeping.

More fine-grained MSAcc_Thr ead_St at escan be added through configure (such as. / configure --with-
m cr ost at e- account i ng=ext r a). Enabling these states causes performance degradation when microstate
accounting is turned off and increases the overhead when it is turned on.

al | oc
Time spent managing memory. Without extra statesthistime is spread out over all other states.
bi f
Time spent in BIFs. Without extra states thistime is part of theemul at or state.
busy_wai t
Time spent busy waiting. Thisis also the state where a scheduler no longer reports that it is active when using
statistics(schedul er_wall _time).So,if youadd al other states but this and sleep, and then
divide that by all time in the thread, you should get something very similar totheschedul er _wal | _ti me
fraction. Without extra states thistime is part of the ot her state.
ets
Time spent executing ETS BIFs. Without extra states thistime is part of theerul at or state.
gc_full
Time spent doing full sweep garbage collection. Without extra statesthistimeis part of the gc state.
ni f
Time spent in NIFs. Without extra states thistime is part of theerrul at or state.
send
Time spent sending messages (processes only). Without extra states thistime is part of theernrul at or state.
tinmers
Time spent managing timers. Without extra states thistime is part of the ot her state.

The utility module msacc(3) can be used to more easily analyse these statistics.
Returnsundef i ned if systemflag mi cr ost at e_account i ng isturned off.
Thelist of thread information is unsorted and can appear in different order between calls.

| The threads and states are subject to change without any prior notice. |

statistics(Item :: reductions) ->
{Total Reductions, Reductions Since Last Call}

Types:
Total Reductions = Reductions Since Last Call = integer() >= 0

Returns information about reductions, for example:

> statistics(reductions).
{2046,11}

192 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Asfrom ERTS 5.5 (Erlang/OTP R11B), this value does not include reductions performed in current time slices of
currently scheduled processes. If an exact valueiswanted, use st ati sti cs(exact _reducti ons).

statistics(Item :: run_queue) -> integer() >= 0

Returns the total length of al normal run-queues. That is, the number of processes and ports that are ready to run on
all available normal run-queues. Dirty run queues are not part of the result. The information is gathered atomically.
That is, the result is a consistent snapshot of the state, but this operation is much more expensive compared to
statistics(total _run_queue_l| engt hs), especially when alarge amount of schedulersis used.

statistics(Item :: run _queue lengths) -> [RunQueuelLength]
Types:
RunQueuelLength = integer() >= 0

Returnsthe same as stati stics(run_queue_| engths_al |) with the exception that no information about
the dirty 10 run queue is part of the result. That is, only run queues with work that is expected to be CPU bound is
part of the result.

statistics(Item :: run _queue lengths all) -> [RunQueuelLength]
Types:
RunQueueLength = integer() >= 0

Returnsalist where each element represents the amount of processes and ports ready to run for each run queue. Values
for normal run queues are located first in the resulting list. The first element corresponds to the normal run queue of
scheduler number 1 and so on. If support for dirty schedulers exist, values for the dirty CPU run queue and the dirty
1O run queue follow (in that order) at the end. The information is not gathered atomically. That is, the result is not
necessarily a consistent snapshot of the state, but instead quite efficiently gathered.

Each normal scheduler has one run queue that it manages. If dirty schedulers schedulers are supported, al dirty
CPU schedulers share one run queue, and al dirty 10 schedulers share one run queue. That is, we have multiple
normal run queues, one dirty CPU run queue and one dirty 10 run queue. Work can not migrate between the
different types of run queues. Only work in normal run queues can migrate to other normal run queues. This has
to be taken into account when evaluating the resullt.

See dso statistics(run_queue_lengths), statistics(total _run_queue_ |l engths all),
statistics(total run_queue_Il engths), statistics(active_tasks),
statistics(active_tasks_all), and statistics(total _active_tasks),
statistics(total _active_tasks_all).

statistics(Item :: runtime) ->
{Total Run Time, Time Since Last Call}

Types:
Total Run Time = Time Since Last Call = integer() >= 0

Returns information about runtime, in milliseconds.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 193

erlang

Thisis the sum of the runtime for all threads in the Erlang runtime system and can therefore be greater than the wall
clock time.

This value might wrap due to limitations in the underlying functionality provided by the operating system that is
used.

Example:

> statistics(runtime).
{1690,1620}

statistics(Item :: scheduler wall time) ->
[{SchedulerId, ActiveTime, TotalTime}] | undefined

Types:

SchedulerId = integer() >=1

ActiveTime = TotalTime = integer() >= 0
Returnsalist of tupleswith{ Schedul er I d, Acti veTi ne, Total Ti me},whereSchedul er | d isaninteger
ID of the scheduler, Act i veTi ne is the duration the scheduler has been busy, and Tot al Ti ne is the total time
duration since schedul er _wal | _t i me activation for the specific scheduler. Note that activation time can differ
significantly between schedulers. Currently dirty schedulers are activated at system start while normal schedulers are
activated sometime after theschedul er _wal | _t i nme functionality is enabled. Thetime unit is undefined and can

be subject to change between releases, OSs, and system restarts. schedul er _wal | _ti ne isonly to be used to
calculate relative values for scheduler utilization. Act i veTi me can never exceed Tot al Ti ne.

The definition of abusy scheduler iswhen it isnot idle and is not scheduling (selecting) a process or port, that is:
e Executing process code

» Executing linked-in driver or NIF code

e Executing BIFs, or any other runtime handling

* Garbage collecting

» Handling any other memory management

Notice that a scheduler can also be busy even if the OS has scheduled out the scheduler thread.

Returnsundef i ned if system flag schedul er _wal | _t i e isturned off.

Thelist of scheduler information is unsorted and can appear in different order between calls.

As of ERTS version 9.0, also dirty CPU schedulers will be included in the result. That is, al scheduler threads
that are expected to handle CPU bound work. If you also want information about dirty I/O schedulers, use
statistics(scheduler_ wall _tinme_all) instead.

Normal schedulers will have scheduler identifiers in the range 1 =< Schedul erl d =<
erl ang: system i nf o(schedul ers). Dirty CPU schedulers will have scheduler identifiers in the range
erl ang: system.info(schedul ers) < Schedul erld =< erlang: system i nf o(schedul ers)
+ erlang: systeminfo(dirty cpu_schedul ers).

194 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The different types of schedulers handle specific types of jobs. Every job is assigned to a specific scheduler type.
Jobs can migrate between different schedulers of the same type, but never between schedulers of different types.
This fact has to be taken under consideration when evaluating the result returned.

Using schedul er _wal | _t i nme to calculate scheduler utilization:

> erlang:system flag(scheduler wall time, true).

false

> Ts@ = lists:sort(erlang:statistics(scheduler wall time)), ok.
ok

Some time later the user takes another snapshot and cal culates scheduler utilization per scheduler, for example:

> Tsl = lists:sort(erlang:statistics(scheduler wall time)), ok.
ok
> lists:map(fun({{I, A0, TO}, {I, Al, T1}}) ->

{I, (A1 - AO)/(T1 - TO)} end, lists:zip(Ts0,Tsl)).
[{1,0.9743474730177548},

{2,0.9744843782751444}%},

{3,0.9995902361669045},

{4,0.9738012596572161},

{5,0.9717956667018103},

{6,0.9739235846420741},

{7,0.973237033077876},

{8,0.9741297293248656}]

Using the same snapshots to calculate atotal scheduler utilization:

> {A, T} = lists:foldl(fun({{ , A0, TO}, { , Al, T1}}, {Ai,Ti}) ->
{Ai + (Al - AO), Ti + (T1 - TO)} end, {0, 0}, lists:zip(TsO,Tsl)),
TotalSchedulerUtilization = A/T.

0.9769136803764825

Total scheduler utilization will equal 1. 0 when all schedulers have been active all the time between the two
measurements.

Another (probably more) useful value is to calculate total scheduler utilization weighted against maximum amount
of available CPU time:

> WeightedSchedulerUtilization = (TotalSchedulerUtilization
* (erlang:system info(schedulers)
+ erlang:system info(dirty cpu_schedulers)))
/ erlang:system info(logical processors available).
0.9769136803764825

Thisweighted scheduler utilization will reach 1. 0 when schedulers are active the same amount of time as maximum
available CPU time. If more schedulers exist than available logical processors, this value may be greater than 1. 0.

Asof ERTSversion 9.0, the Erlang runtime system with SMP support will as default have more schedul ersthan logical
processors. This due to the dirty schedulers.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 195

erlang

schedul er _wal | _tine is by default disabled. To enable it, use
erl ang: system fl ag(schedul er_wall _tine, true).

statistics(Item :: scheduler wall time all) ->
[{SchedulerId, ActiveTime, TotalTime}] | undefined

Types:
SchedulerId = integer() >=1
ActiveTime = TotalTime = integer() >= 0

Thesameasstati stics(schedul er_wal |l _tine), except that it aso include information about all dirty I/
O schedulers.

Dirty 10 schedulers will have scheduler identifiers in the range er| ang: system i nf o(schedul ers)
+ erl ang: system.info(dirty_cpu_schedul ers) < Schedul erl d =<
erl ang: system.info(schedulers) + erlang:systeminfo(dirty_cpu_schedulers) +
erl ang: system.info(dirty_io_schedul ers).

Note that work executing on dirty 1/0O schedulers are expected to mainly wait for 1/0O. That is, when you get high
scheduler utilization on dirty 1/0 schedulers, CPU utilization is not expected to be high due to this work.

statistics(Item :: total active tasks) -> ActiveTasks
Types:
ActiveTasks = integer() >= 0
Thesameascallingl i sts: sun(statistics(active_tasks)), but moreefficient.

statistics(Item :: total active tasks all) -> ActiveTasks
Types:
ActiveTasks = integer() >= 0
Thesameascallingl i sts: sun(statistics(active_tasks_all)), but moreefficient.

statistics(Item :: total run queue lengths) ->
TotalRunQueuelengths

Types:
TotalRunQueuelLengths = integer() >= 0
Thesameascallingl i sts: sun(stati stics(run_queue_| engt hs)), but more efficient.

statistics(Item :: total run _queue lengths all) ->
TotalRunQueuelLengths

Types:
TotalRunQueuelengths = integer() >= 0
Thesameascalingl i sts: sum(statistics(run_queue_l engths_all)), but more efficient.

196 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

statistics(Item :: wall clock) ->
{Total Wallclock Time,
Wallclock Time Since Last Call}

Types:
Total Wallclock Time = Wallclock Time Since Last Call = integer() >= 0

Returns information about wall clock. wal | _cl ock can be used in the same manner asr unt i e, except that real
time is measured as opposed to runtime or CPU time.

erlang:suspend process(Suspendee) -> true
Types:
Suspendee = pid()

Suspends the process identified by Suspendee. The same as calling
erl ang: suspend_process(Suspendee, []).

This BIF isintended for debugging only.

erlang:suspend process(Suspendee, OptList) -> boolean()
Types:

Suspendee = pid()

OptList = [Opt]

Opt = unless suspending | asynchronous

Increases the suspend count on the process identified by Suspendee and puts it in the suspended state if it is not
already in that state. A suspended processis not scheduled for execution until the process has been resumed.

A process can be suspended by multiple processes and can be suspended multiple times by a single process. A
suspended process does not leave the suspended state until its suspend count reaches zero. The suspend count of
Suspendee is decreased when er | ang: r esune_pr ocess(Suspendee) iscaled by the same process that
caleder | ang: suspend_pr ocess(Suspendee) . All increased suspend counts on other processes acquired by
aprocess are automatically decreased when the process terminates.

Options (Opt 9):
asynchronous

A suspend request is sent to the process identified by Suspendee. Suspendee eventually suspends unless
it is resumed before it could suspend. The caler of er | ang: suspend_pr ocess/ 2 returns immediately,
regardiess of whether Suspendee has suspended yet or not. The point in time when Suspendee
suspends cannot be deduced from other events in the system. It is only guaranteed that Suspendee
eventually suspends (unless it is resumed). If option asynchr onous has not been passed, the caller of
erl ang: suspend_process/ 2 isblocked until Suspendee has suspended.

unl ess_suspendi ng

The process identified by Suspendee is suspended unless the calling process already is suspending
Suspendee. If unl ess_suspendi ng is combined with option asynchr onous, a suspend request is sent
unlessthe calling process aready is suspending Suspendee or if asuspend request already hasbeen sent and is
intransit. If the calling process already is suspending Suspendee, or if combined with optionasynchr onous
and a send request already is in transit, f al se is returned and the suspend count on Suspendee remains
unchanged.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 197

erlang

If the suspend count on the process identified by Suspendee isincreased, t r ue isreturned, otherwisef al se.

| This BIF isintended for debugging only. |

Failures:

badar g
If Suspendee isnot aprocessidentifier.
badar g
If the processidentified by Suspendee isthe same process as the process calling
erl ang: suspend_process/ 2.
badar g
If the processidentified by Suspendee isnot alive.
badar g
If the process identified by Suspendee resides on another node.
badar g
If Opt Li st isnot aproper list of valid Opt s.
systemlinit
If the processidentified by Suspendee has been suspended more times by the calling process than can be
represented by the currently used internal data structures. The system limit is > 2,000,000,000 suspends and
will never be lower.

erlang:system flag(Flag :: backtrace depth, Depth) -> 0ldDepth
Types:
Depth = 0ldDepth = integer() >= 0
Sets the maximum depth of call stack back-traces in the exit reason element of ' EXI T' tuples. The flag also limits
the stacktrace depth returned by pr ocess_i nf o itemcur r ent _st ackt r ace.

Returns the old value of the flag.

erlang:system flag(Flag :: cpu topology, CpuTopology) ->

0ldCpuTopology
Types:

CpuTopology = 0ldCpuTopology = cpu_t opol ogy()
cpu_topology() = [LevelEntry :: level _entry()] | undefined
level entry() =

{LevelTag :: level _tag(), SubLevel :: sub_level ()} |

{LevelTag :: level _tag(),

InfoList :: info list(),

SubLevel :: sub _level ()}
level tag() = core | node | processor | thread

sub level()
[LevelEntry :: level _entry()] |

198 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

(LogicalCpuld :: {logical, integer() >= 0})
info list() = []

Thisargument isdeprecated. Instead of using this argument, use command-line argument +sct inerl (1) .
When this argument is removed, afinal CPU topology to use is determined at emulator boot time.

Sets the user-defined CpuTopol ogy. The user-defined CPU topology overrides any automatically detected CPU
topology. By passingundef i ned asCpuTopol ogy, thesystem revertsto the CPU topol ogy automatically detected.
The returned value equals the value returned fromer | ang: syst em i nf o(cpu_t opol ogy) before the change
was made.

Returns the old value of the flag.

The CPU topology is used when binding schedulers to logical processors. If schedulers are already bound when the
CPU topology is changed, the schedulers are sent a request to rebind according to the new CPU topology.

The user-defined CPU topology can aso be set by passing command-line argument +sct toerl (1) .

For information on type CpuTopol ogy and more, see er | ang: syst em i nf o(cpu_t opol ogy) aswell as
command-lineflags+sct and +sbt inerl (1).

erlang:system flag(Flag :: dirty cpu schedulers online,
DirtyCPUSchedulersOnline) ->
0ldDirtyCPUSchedulersOnline

Types:
DirtyCPUSchedulersOnline = 0ldDirtyCPUSchedulersOnline = integer() >=1

Sets the number of dirty CPU schedulers online. Rangeis 1 <= Di rtyCPUSchedul ersOnline <= N,
where N is the smallest of the return values of erl ang: system.info(dirty_cpu_schedul ers) and
erl ang: system.i nfo(schedul ers_online).

Returns the old value of the flag.

The number of dirty CPU schedulers online can changeif the number of schedulers online changes. For example, if 12
schedulersand 6 dirty CPU schedulersareonling, andsyst em f | ag/ 2 isusedto set the number of schedulersonline
to 6, then the number of dirty CPU schedulers online is automatically decreased by half aswell, down to 3. Similarly,
the number of dirty CPU schedulers online increases proportionally to increases in the number of schedulers online.

For more information, see erl ang: system.info(dirty_cpu_schedul ers) and
erl ang: system.info(dirty_cpu_schedul ers_online).

erlang:system flag(Flag :: erts alloc, Value :: {Alloc, F, V}) ->
ok | notsup

Types:
Alloc = F = atom()
V = integer()

Sets system flagsfor ert s_al | oc(3) . Al | oc isthe alocator to affect, for example bi nary_al | oc. F isthe
flag to change and V is the new value.

Only asubset of dl erts_al | oc flags can be changed at run time. This subset is currently only the flag sbct .
Returns ok if the flag was set or not sup if not supportedby erts_al | oc.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 199

erlang

erlang:system flag(Flag :: fullsweep after, Number) -> OldNumber
Types.
Number = OldNumber = integer() >= 0

Setssystem flag f ul | sweep_aft er. Nunber isanon-negative integer indicating how many times generational
garbage collections can be done without forcing a fullsweep collection. The value applies to new processes, while
processes aready running are not affected.

Returns the old value of the flag.
In low-memory systems (especially without virtual memory), setting the value to O can help to conserve memory.
This value can also be set through (OS) environment variable ERL_ FULLSWEEP AFTER.

erlang:system flag(Flag :: microstate accounting, Action) ->
OldState

Types.
Action = true | false | reset
OldState = true | false

Turns on/off microstate accounting measurements. When passing reset, all counters are reset to 0.
For moreinformation see st ati sti cs(m crostate_accounting).

erlang:system flag(Flag :: min heap size, MinHeapSize) ->
0ldMinHeapSize
Types:
MinHeapSize = OldMinHeapSize = integer() >= 0
Sets the default minimum heap size for processes. The sizeis specified inwords. Thenew m n_heap_si ze effects

only processes spawned after the change of m n_heap_si ze has been made. mi n_heap_si ze can be set for
individual processes by using spawn_opt/ 4 or process_fl ag/ 2.

Returns the old value of the flag.

erlang:system flag(Flag :: min bin vheap size, MinBinVHeapSize) ->
0ldMinBinVHeapSize
Types:
MinBinVHeapSize = 0ldMinBinVHeapSize = integer() >= 0
Sets the default minimum binary virtual heap size for processes. The size is specified in words. The new
m n_bi n_vhheap_si ze effects only processes spawned after the change of m n_bi n_vheap_si ze has

been made. m n_bi n_vheap_si ze can be set for individua processes by using spawn_opt/ 2, 3,4 or
process_fl ag/ 2.

Returns the old value of the flag.

erlang:system flag(Flag :: max heap size, MaxHeapSize) ->
0OldMaxHeapSize
Types:
MaxHeapSize = O0ldMaxHeapSize = max_heap_si ze()
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,

200 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

kill => boolean(),
error_logger => boolean()}

Setsthe default maximum heap size settings for processes. The sizeis specified inwords. Thenew nax_heap_si ze
effects only processes spawned efter the change has been made. max_heap_si ze canbe set for individual processes
usingspawn_opt/ 2, 3, 4 or process_fl ag/ 2.

Returns the old value of the flag.

erlang:system flag(Flag :: multi scheduling, BlockState) ->
O0ldBlockState

Types:
BlockState = block | unblock | block normal | unblock normal
OldBlockState = blocked | disabled | enabled

If multi-scheduling isenabled, more than one schedul er thread isused by theemul ator. M ulti-scheduling can be blocked
in two different ways. Either all schedulers but one is blocked, or al normal schedulers but one is blocked. When
only normal schedulers are blocked, dirty schedulers are free to continue to schedule processes.

If Bl ockSt at e =: = bl ock, multi-scheduling isblocked. That is, one and only one scheduler thread will execute.
If Bl ockSt at e =: = unbl ock and no one else blocks multi-scheduling, and this process has blocked only once,
multi-scheduling is unblocked.

If Bl ockSt at e =:= bl ock_nor mal , normal multi-scheduling is blocked. That is, only one normal scheduler
thread will execute, but multipledirty schedulerscan execute. If Bl ockSt at e =: = unbl ock_nor nal andnoone
else blocks normal multi-scheduling, and this process has blocked only once, normal multi-scheduling is unblocked.

One process can block multi-scheduling and normal multi-scheduling multipletimes. If aprocess has blocked multiple
times, it must unblock exactly as many times as it has blocked before it has released its multi-scheduling block. If a
process that has blocked multi-scheduling or normal multi-scheduling exits, it automatically releases its blocking of
multi-scheduling and normal multi-scheduling.

Thereturn values are di sabl ed, bl ocked, bl ocked_nor nal , or enabl ed. The returned value describes the
state just after thecall toer | ang: system flag(nul ti _schedul i ng, Bl ockSt at e) hasbeen made. For
information about the return values, see er | ang: system i nfo(rmul ti _schedul i ng).

Blocking of multi-scheduling and normal multi-scheduling is normally not needed. If you feel that you need to use
these features, consider it afew more times again. Blocking multi-scheduling is only to be used as alast resort, as
itismost likely avery inefficient way to solve the problem.

See also erl ang: system i nfo(mnul ti_scheduling),
erl ang: system.info(normal _multi_schedul i ng_bl ockers),
erl ang: system.info(multi_schedul i ng_bl ockers), and

erl ang: system.i nfo(schedul ers).

erlang:system flag(Flag :: scheduler bind type, How) ->
0ldBindType
Types:
How = schedul er _bi nd_type() | default bind
0ldBindType = schedul er _bi nd_t ype()

scheduler bind type() =
no node processor spread |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 201

erlang

no_node thread spread |

no spread |

processor spread |

spread |

thread spread |

thread no node processor spread |
unbound

This argument is deprecated. Instead of using this argument, use command-line argument +sbt inerl (1).
When this argument is removed, afinal scheduler bind type to use is determined at emulator boot time.

Controlsif and how schedulers are bound to logical processors.

When er | ang: system fl ag(schedul er _bi nd_type, How) iscalled, an asynchronous signal is sent to
all schedulers online, causing them to try to bind or unbind as requested.

If ascheduler failsto bind, thisis often silently ignored, asit isnot always possible to verify valid logical processor
identifiers. If an error isreported, it isreported to er r or _| ogger . To verify that the schedulers have bound as
requested, cal erl ang: system i nf o(schedul er _bi ndi ngs).

Schedulers can be bound on newer Linux, Solaris, FreeBSD, and Windows systems, but more systems will be
supported in future rel eases.

In order for the runtime system to be able to bind schedulers, the CPU topology must be known. If the runtime system
fails to detect the CPU topology automatically, it can be defined. For more information on how to define the CPU
topology, see command-lineflag +sct inerl (1).

The runtime system does by default not bind schedulersto logical processors.

If the Erlang runtime system is the only OS process binding threads to logical processors, this improves the
performance of the runtime system. However, if other OS processes (for example, another Erlang runtime system)
also bind threads to logical processors, there can be a performance penalty instead. Sometimes this performance
penalty can be severe. If so, it is recommended to not bind the schedulers.

Schedulers can be bound in different ways. Argument How determines how schedulers are bound and can be any of
the following:

unbound

Same as command-line argument +sbt uinerl (1).
no_spread

Same as command-line argument +sbt nsinerl (1).
t hr ead_spread

Same as command-line argument +sbt tsinerl (1).
pr ocessor _spr ead

Same as command-line argument +sbt psinerl (1).
spr ead

Same as command-line argument +sbt s inerl (1).

202 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

no_node_t hread_spread

Same as command-line argument +sbt nntsinerl (1).
no_node_processor_spread

Same as command-line argument +sbt nnpsinerl (1).
t hread_no_node_processor_spread

Same as command-line argument +sbt t nnpsinerl (1).
defaul t _bi nd

Same as command-line argument +sbt dbinerl (1).

The returned value equals How before flag schedul er _bi nd_t ype was changed.
Failures:

not sup

If binding of schedulersis not supported.
badar g

If Howis not one of the documented alternatives.
badar g

If CPU topology information is unavailable.

The scheduler bind type can also be set by passing command-line argument +sbt toer| (1) .

For more information, see erl ang: system i nfo(schedul er _bind_type),
erl ang: system i nf o(schedul er _bi ndi ngs) ,aswell ascommand-lineflags+sbt and+sct iner| (1).

erlang:system flag(Flag :: scheduler wall time, Boolean) ->
0ldBoolean

Types:
Boolean = 0ldBoolean = boolean()

Turns on or off scheduler wall time measurements.

For moreinformation, see st ati stics(schedul er_wall _tine).

erlang:system flag(Flag :: schedulers online, SchedulersOnline) ->
0ldSchedulersOnline

Types.
SchedulersOnline = 0ldSchedulersOnline = integer() >= 1

Sets the number of schedulers online. Range is 1 <= Schedul ersOnl i ne <=
erl ang: system.i nfo(schedul ers).

Returns the old value of the flag.

If the emulator was built with support for dirty schedulers, changing the number of schedulers online can also change
the number of dirty CPU schedulers online. For example, if 12 schedulers and 6 dirty CPU schedulers are online, and
system fl ag/ 2 isusedto set the number of schedulers onlineto 6, then the number of dirty CPU schedulersonline
isautomatically decreased by half aswell, down to 3. Similarly, the number of dirty CPU schedulers online increases
proportionally to increases in the number of schedulers online.

For more information, See erl ang: system i nf o(schedul ers) and
erl ang: system i nfo(schedul ers_online).

erlang:system flag(Flag :: trace control word, TCW) -> 0ldTCW
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 203

erlang

TCW = O0ldTCW = integer() >= 0

Sets the value of the node trace control word to TCW which is to be an unsigned integer. For more information, see
functionset _t cwin section "Match Specificationsin Erlang" in the User's Guide.

Returns the old value of the flag.

erlang:system flag(Flag :: time offset, Value :: finalize) ->
OldState

Types:
OldState = preliminary | final | volatile

Finalizes the time offset when single time warp mode is used. If another time warp mode is used, the time offset state
isleft unchanged.

Returnsthe old state identifier, that is:

o Ifprelim nary isreturned, finaization was performed and the time offset is now final.

« If final is returned, the time offset was aready in the final state. This either because another
erl ang: system flag(tinme_offset, finalize) cal orbecauseno timewarp modeis used.

« Ifvol ati | e isreturned, the time offset cannot be finalized because multi-time warp mode is used.

erlang:system info(Item :: allocated areas) -> [tuple()]
erlang:system info(Item :: allocator) ->
{Allocator, Version, Features, Settings}

erlang:system info(Item :: alloc util allocators) -> [Alloc]
erlang:system info(Item :: {allocator, Alloc}) -> [term()]
erlang:system info(Item :: {allocator sizes, Alloc}) -> [term()]
Types.

Allocator = undefined | glibc

Version = [integer() >= 0]
Features = [atom()]
Settings =
[{Subsystem :: atom(),
[{Parameter :: atom(), Value :: term()}1}]

Alloc = atom()
Returns various information about the allocators of the current system (emulator) as specified by | t em
al | ocat ed_ar eas

Returns alist of tuples with information about miscellaneous allocated memory aress.

Each tuple contains an atom describing the type of memory asfirst element and the amount of allocated memory
in bytes as second element. When information about allocated and used memory is present, also athird element
is present, containing the amount of used memory in bytes.

erl ang: system.info(allocated areas) is intended for debugging, and the content is highly
implementation-dependent. The content of the results therefore changes when needed without prior notice.

Notice that the sum of these valuesis not the total amount of memory allocated by the emulator. Some values
are part of other values, and some memory areas are not part of the result. For information about the total amount
of memory allocated by the emulator, see er | ang: nenory/ 0, 1.

204 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

al | ocat or

Returns{ Al | ocat or, Version, Features, Settings,where

Al | ocat or corresponds to the mal | oc() implementation used. If Al | ocat or equals undefi ned,
themal | oc() implementation used cannot be identified. gl i bc can be identified.

Ver si on isalist of integers (but not a string) representing the version of themal 1 oc() implementation
used.

Feat ur es isalist of atoms representing the allocation features used.

Settings isalist of subsystems, their configurable parameters, and used values. Settings can differ
between different combinations of platforms, allocators, and allocation features. Memory sizes are given in
bytes.

See also "System Flags Effecting erts_alloc” in erts_al | oc(3).

alloc util _allocators

Returns a list of the names of al allocators using the ERTS internal al | oc_ut i | framework as atoms. For
more information, see section The alloc_util frameworkinerts_al | oc(3).

{allocator, Alloc}

Returnsinformation about the specified allocator. Asfrom ERTS5.6.1, thereturn valueisalist of { i nst ance,
I nstanceNo, | nstancel nfo} tuples, where | nst ancel nf o contains information about a specific
instance of the alocator. If Al | oc isnot arecognized alocator, undef i ned isreturned. If Al | oc isdisabled,
f al se isreturned.

Notice that the information returned is highly implementation-dependent and can be changed or removed at any
time without prior notice. It was initially intended as a tool when developing new alocators, but as it can be of
interest for othersit has been briefly documented.

The recognized allocators are listed in erts_al | oc(3) . Information about super carriers can be obtained
from ERTS 8.0 with{al | ocat or, erts_mmap} or from ERTS 5.10.4; the returned list when calling with
{all ocator, mnseg_alloc} asoincludesan{erts_mmap, _} tupleasoneeementinthelist.

After reading theert s_al | oc(3) documentation, the returned information more or less speaks for itself, but
it can be worth explaining some things. Call counts are presented by two values, the first valueis gigacalls, and
the second value is calls. nhcs and sbcs denote multi-block carriers, and single-block carriers, respectively.
Sizes are presented in bytes. When asize is not presented, it is the amount of something. Sizes and amounts are
often presented by three values:

Thefirst isthe current value.

The second is the maximum value since the last call toer | ang: syst em i nf o({al | ocat or,
Al l oc}).

The third is the maximum value since the emul ator was started.

If only onevalueispresent, itisthecurrent value. f i x_al | oc memory block types are presented by two values.
Thefirst value is the memory pool size and the second value is the used memory size.

{all ocator_sizes, Alloc}

Returnsvarioussizeinformation for the specified allocator. Theinformation returned isasubset of theinformation
returned by erl ang: system.info({allocator, Alloc}).

erlang:system info(Item :: cpu topology) -> CpuTopology
erlang:system info(Item

{cpu_topology, defined | detected | used}) ->

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 205

erlang

CpuTopology
Types.
CpuTopology = cpu_t opol ogy()
cpu topology() = [LevelEntry :: level _entry()] | undefined

All Level Ent r ysof alist must contain the same Level Tag, except on the top level where both node and
processor Level Tagscan coexist.

level entry() =

{LevelTag :: level _tag(), SubLevel :: sub_level ()} |
{LevelTag :: level tag(),
InfoList :: info_list(),

SubLevel :: sub_level ()}
{Level Tag, SublLevel} == {Level Tag, [], SubLevel}
level tag() = core | node | processor | thread
More Level Tags can beintroduced in afuture release.
sub_level() =
[LevelEntry :: level _entry()] |
(LogicalCpuld :: {logical, integer() >= 0})
info list() = []
Theinfo_|ist() canbeextendedinafuturerelease.
Returns various information about the CPU topology of the current system (emulator) as specified by | t em
cpu_t opol ogy

Returnsthe CpuTopol ogy currently used by the emulator. The CPU topology is used when binding schedulers
to logical processors. The CPU topology used is the user-defined CPU topology, if such exists, otherwise the
automatically detected CPU topology, if such exists. If no CPU topology exists, undef i ned isreturned.

node refersto Non-Uniform Memory Access (NUMA) nodes. t hr ead refersto hardware threads (for example,
Intel hyper-threads).

A level interm CpuTopol ogy can be omitted if only one entry existsand | nf oLi st isempty.

t hr ead can only be asublevel to cor e. cor e can be asublevel to pr ocessor or node. pr ocessor can
be on the top level or asublevel to node. node can be on the top level or asublevel to pr ocessor . That is,
NUMA nodes can be processor internal or processor external. A CPU topology can consist of amix of processor
internal and external NUMA nodes, as long as each logical CPU belongs to one NUMA node. Cache hierarchy
isnot part of the CouTopol ogy type, but will bein afuture release. Other things can also make it into the CPU
topology in afuture release. So, expect the CpuTopol ogy typeto change.

{cpu_t opol ogy, defined}

Returns the user-defined CpuTopol ogy. For more information, see command-lineflag +sct inerl (1) and
argument cpu_t opol ogy.

{cpu_t opol ogy, detected}

Returns the automatically detected CpuTopol ogyy. The emulator detects the CPU topology on some newer
Linux, Solaris, FreeBSD, and Windows systems. On Windows system with more than 32 logical processors, the
CPU topology is hot detected.

For more information, see argument cpu_t opol ogy.
{cpu_t opol ogy, used}
Returns CpuTopol ogy used by the emulator. For more information, see argument cpu_t opol ogy.

206 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:system info(Item :: fullsweep after) ->

{fullsweep after, integer() >= 0}

erlang:system info(Item :: garbage collection) ->

[{atom(), integer()}]

erlang:system info(Item :: max_heap size) ->

{max_heap_size,
MaxHeapSize :: nmx_heap_size()}

erlang:system info(Item :: message queue data) ->

nmessage_queue_dat a()

erlang:system info(Item :: min_heap size) ->

{min_heap_size,
MinHeapSize :: integer() >= 1}

erlang:system info(Item :: min _bin vheap size) ->

{min_bin vheap size,
MinBinVHeapSize :: integer() >= 1}

Types.

message queue data() = off heap | on_heap
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error _logger => boolean()}

Returns information about the default process heap settings:

full sweep_after

Returns{ful | sweep_after, integer() >= 0},whichisthef ul | sweep_aft er garbagecollection
setting used by default. For more information, see gar bage_col | ect i on described below.

gar bage_col |l ection

Returns a list describing the default garbage collection settings. A process spawned on the local node by a
spawn or spawn_| i nk uses these garbage collection settings. The default settings can be changed by using
erl ang: system fl ag/ 2. spawn_opt/ 2, 3, 4 can spawn aprocess that does not use the default settings.

max_heap_si ze

Returns { max_heap_si ze, MaxHeapSi ze}, where MaxHeapSi ze is the current system-wide
maximum heap size settings for spawned processes. This setting can be set using the command-
line flags +hmax, +hmaxk and +hmaxel in erl(1). It can adso be changed at runtime
using erlang: system fl ag(max_heap_si ze, MaxHeapSi ze) . For more details about the
max_heap_si ze processflag, see process_fl ag(max_heap_si ze, MaxHeapSi ze).

message_queue_dat a

Returns the default value of the nessage queue_dat a process flag, which is either of f _heap or
on_heap. This default is set by command-line argument +hngd in er | (1) . For more information on the
message_queue_dat a process flag, see documentation of process_f | ag(message_queue_dat a,

MQD) .

m n_heap_si ze

Returns{m n_heap_si ze, M nHeapSi ze}, whereM nHeapSi ze isthe current system-wide minimum
heap size for spawned processes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 207

erlang

m n_bi n_vheap_si ze

Returns { m n_bi n_vheap_si ze, M nBi nVHeapSi ze}, where M nBi nVHeapSi ze is the current
system-wide minimum binary virtual heap size for spawned processes.

erlang:system info(Item ::

erlang:system info(Item ::

erlang:system info(Item ::
opt |
debug |
purify |
quantify |
purecov |
gcov |
valgrind |
gprof |
lent |

atom count) -> integer() >=1
atom limit) -> integer() >=1
build type) ->

erlang:
erlang:
erlang:
erlang:
erlang:
erlang:

frmpt
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::

system info(Item ::
infin

r
c_compiler used) -> {atom(), term()}
check io) -> [term()]

compat rel) -> integer()

creation) -> integer()

debug compiled) -> boolean()
delayed node table gc) ->

ity | integer() >= 0
erlang:system info(Item :: dirty cpu schedulers) ->
integer() >= 0
erlang:system info(Item :: dirty cpu schedulers online) ->
integer() >= 0
erlang:system info(Item :: dirty io schedulers) ->
integer() >= 0
erlang:system info(Item :: dist) -> binary()
erlang:system info(Item :: dist buf busy limit) ->
integer() >= 0
erlang:system info(Item :: dist ctrl) ->
{Node :: node(),
ControllingEntity :: port() | pid()}
erlang:system info(Item :: driver version) -> string()
erlang:system info(Item :: dynamic trace) ->

208 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:

erlang:
erlang:

erlang:

erlang:

erlang:
erlang:

erlang:
erlang:

erlang:

erlang:
erlang:
erlang:
erlang:
erlang:
erlang:

none | dtrace | systemtap
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::

dynamic trace probes) -> boolean()
elib malloc) -> false

eager check io) -> boolean()

ets limit) -> integer() >=1

heap sizes) -> [integer() >= 0]
heap type) -> private

info) -> binary()

kernel poll) -> boolean()

loaded) -> binary()

logical processors |

logical processors available |
logical processors online) ->
unknown | integer() >= 1

system info(Item ::
system info(Item ::

machine) -> string()
modified timing level) ->

integer() | undefined
system info(Item :: multi scheduling) ->

disabled |

blocked |

blocked normal |

enabled

system info(Item ::

[Pid ::

system info(Item ::
system_info(Item ::

[Pid ::

system info(Item ::

system info(Item ::

[{atom(), term()}]
system info(Item ::

[{atom(), term()}]
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::
system info(Item ::

system info(Item ::
spr

€a

multi scheduling blockers) ->

pid()]

nif version) -> string()

normal _multi scheduling blockers) ->
pid()]

otp release) -> string()
os_monotonic time source) ->

os_system time source) ->

port count) -> integer() >= 0
port limit) -> integer() >=1
process count) -> integer() >=1
process limit) -> integer() >=1

procs) -> binary()
scheduler bind type) ->
d |

processor _spread |

thread spread |

thread no node processor spread |
no _node processor spread |
no_node thread spread |

no_spread |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 209

erlang

unbound
erlang:system info(Item :: scheduler bindings) -> tuple()
erlang:system info(Item :: scheduler id) ->

SchedulerlId :: integer() >=1
erlang:system info(Item :: schedulers | schedulers online) ->

integer() >=1
erlang:system info(Item :: smp support) -> boolean()
erlang:system info(Item :: start time) -> integer()
erlang:system info(Item :: system version) -> string()
erlang:system info(Item :: system architecture) -> string()
erlang:system info(Item :: threads) -> boolean()
erlang:system info(Item :: thread pool size) -> integer() >= 0
erlang:system info(Item :: time correction) -> true | false
erlang:system info(Item :: time offset) ->

preliminary | final | volatile
erlang:system info(Item :: time warp_mode) ->

no_time warp |
single time warp |
multi time warp

erlang:system info(Item :: tolerant timeofday) ->
enabled | disabled
erlang:system info(Item :: trace control word) ->
integer() >= 0
erlang:system info(Item :: update cpu info) -> changed | unchanged
erlang:system info(Item :: version) -> string()

Returns various information about the current system (emulator) as specified by | t em
at om count

Returns the number of atoms currently existing at the local node. The valueis given as an integer.
atomlint

Returns the maximum number of atoms allowed. This limit can be increased at startup by passing command-
lineflag +t toerl (1).

buil d_type

Returns an atom describing the build type of the runtime system. Thisis normally the atom opt for optimized.
Other possible return values are debug, puri fy, quanti fy, purecov, gcov, val gri nd, gpr of , and
| cnt . Possible return values can be added or removed at any time without prior notice.

c_conpil er _used

Returns a two-tuple describing the C compiler used when compiling the runtime system. The first element is an
atom describing the name of the compiler, or undef i ned if unknown. The second element is aterm describing
the version of the compiler, or undef i ned if unknown.

check io

Returns a list containing miscellaneous information about the emulators internal 1/0 checking. Notice that the
content of the returned list can vary between platforms and over time. It is only guaranteed that alist is returned.

210 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

conpat _rel

Returns the compatibility mode of the local node as an integer. The integer returned represents the Erlang/OTP
release that the current emulator has been set to be backward compatible with. The compatibility mode can be
configured at startup by using command-lineflag +Riner!| (1) .

cpu_t opol ogy
See above.
creation

Returnsthe creation of thelocal node asan integer. The creation ischanged when anodeisrestarted. The creation
of anodeisstored in process identifiers, port identifiers, and references. This makes it (to some extent) possible
to distinguish between identifiers from different incarnations of a node. The valid creations are integers in the
range 1..3, but thiswill probably change in afuture release. If the nodeis not alive, O is returned.

debug_conpi | ed
Returnst r ue if the emulator has been debug-compiled, otherwisef al se.
del ayed_node_t abl e_gc

Returns the amount of time in seconds garbage collection of an entry in anode table is delayed. Thislimit can be
set on startup by passing command-lineflag+zdnt gc toer | (1) . For moreinformation, see the documentation
of the command-line flag.

dirty _cpu_schedul ers

Returns the number of dirty CPU scheduler threads used by the emulator. Dirty CPU schedulers execute CPU-
bound native functions, such as NIFs, linked-in driver code, and BIFs that cannot be managed cleanly by the
normal emulator schedulers.

The number of dirty CPU scheduler threadsis determined at emulator boot time and cannot be changed after that.
However, the number of dirty CPU scheduler threads online can be changed at any time. The number of dirty
CPU schedulers can be set at startup by passing command-line flag +SDcpu or +SDPcpuiner! (1) .

See aso erl ang: system flag(dirty_cpu_schedul ers_onli ne,
Di rt yCPUSchedul ersOnl i ne), erlang:system.info(dirty_cpu_schedul ers_online),
erl ang: system.info(dirty_i o_schedul ers), erl ang: system i nf o(schedul ers),
erl ang: system i nf o(schedul ers_onl i ne), and

erl ang: system fl ag(schedul ers_onl i ne, Schedul ersOnline).
dirty_cpu_schedul ers_online

Returns the number of dirty CPU schedulers onlinee The return vaue satisfies
1 <= Di rt yCPUSchedul er sOnl i ne <= N, whee N is the
smalest of the return vaues of erlang:systeminfo(dirty cpu schedulers) and
erl ang: system i nfo(schedul ers_online).

The number of dirty CPU schedulers online can be set at startup by passing command-line flag +SDcpu in
erl(1).

For more information, see erl ang: systeminfo(dirty cpu_schedul ers),
erlang: systeminfo(dirty i o_schedul ers),
erl ang: system i nf o(schedul ers_onl i ne), and

erlang: system flag(dirty cpu_schedul ers_online, D rtyCPUSchedul ersOnli ne).
dirty_io_schedul ers

Returnsthe number of dirty 1/O schedulersasan integer. Dirty 1/0O schedul ers execute I/O-bound native functions,
such as NIFs and linked-in driver code, which cannot be managed cleanly by the normal emulator schedulers.

This value can be set at startup by passing command-line argument +SDi o iner| (1) .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 211

erlang

For more information, see erl ang: system.info(dirty_cpu_schedul ers),
erl ang: system.info(dirty_cpu_schedul ers_online), and
erl ang: system flag(dirty_cpu_schedul ers_online, D rtyCPUSchedul ersOnline).

di st

Returns a binary containing a string of distribution information formatted as in Erlang crash dumps. For more
information, see section How to interpret the Erlang crash dumpsin the User's Guide.

di st_buf_busy_linit

Returnsthevalue of thedistribution buffer busy limitin bytes. Thislimit can be set at startup by passing command-
lineflag +zdbbl toerl (1).

dist_ctrl

Returnsalist of tuples{ Node, ControllingEntity}, oneentryfor each connected remote node. Node is
the node name and Cont r ol | i ngEnt i t y isthe port or process identifier responsible for the communication
to that node. More specifically, Cont r ol | i ngEnt i t y for nodes connected through TCP/IP (the normal case)
isthe socket used in communication with the specific node.

driver _version

Returns a string containing the Erlang driver version used by the runtime system. It has the form "<major
ver>.<minor ver>".

dynam c_trace

Returns an atom describing the dynamic trace framework compiled into the virtual machine. It can
be dtrace, systentap, or none. For a commercia or standard build, it is aways none. The
other return values indicate a custom configuration (for example, . / configure --with-dynam c-
trace=dtrace). For more information about dynamic tracing, see dyntrace(3) manual page and the
README. dt r ace/README. syst ent ap filesin the Erlang source code top directory.

dynani c_trace_probes

Returns a bool ean() indicating if dynamic trace probes (dtrace or systentap) are built into
the emulator. This can only be true if the virtua machine was built for dynamic tracing (that is,
system i nf o(dynam c_trace) returnsdt r ace or syst ent ap).

end_tinme

The last Erlang monotonic time in nat i ve time unit that can be represented internally in the current Erlang
runtime system instance. The time between the start time and the end time is at least a quarter of amillennium.

elib_malloc

This option will be removed in afuture release. The return value will dwaysbef al se, astheel i b_nmal | oc
allocator has been removed.

eager _check_ io

Returns the value of command-lineflag +seci oinerl (1), whichiseithert r ue or f al se. For information
about the different values, see the documentation of the command-line flag.

ets limt

Returns the maximum number of ETStablesallowed. Thislimit can beincreased at startup by passing command-
lineflag+e toer | (1) or by setting environment variable ERL_ MAX_ETS_TABLES before starting the Erlang
runtime system.

heap_si zes
Returnsalist of integers representing valid heap sizesin words. All Erlang heaps are sized from sizesin thislist.

212 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

heap_t ype
Returns the heap type used by the current emulator. One heap type exists:

private
Each process has a heap reserved for its use and no references between heaps of different processes are
allowed. Messages passed between processes are copied between heaps.

info

Returns a binary containing a string of miscellaneous system information formatted as in Erlang crash dumps.
For more information, see section How to interpret the Erlang crash dumps in the User's Guide.

ker nel _pol |
Returnst r ue if the emulator uses some kind of kernel-poll implementation, otherwisef al se.
| oaded

Returns abinary containing a string of loaded module information formatted as in Erlang crash dumps. For more
information, see section How to interpret the Erlang crash dumps in the User's Guide.

| ogi cal _processors

Returns the detected number of logical processors configured in the system. Thereturn value is either an integer,
or the atom unknown if the emulator cannot detect the configured logical processors.

| ogi cal _processors_avail abl e

Returns the detected number of logical processors available to the Erlang runtime system. The return value is
either aninteger, or theatom unknown if the emulator cannot detect the availablelogical processors. The number
of available logical processorsis lessthan or equal to the number of logical processors online.

| ogi cal _processors_online

Returns the detected number of logical processors online on the system. The return value is either an integer, or
the atom unknown if the emulator cannot detect logical processors online. The number of logical processors
onlineislessthan or equal to the number of logical processors configured.

machi ne
Returns a string containing the Erlang machine name.
nodi fied_timng_| evel

Returns the modified timing-level (an integer) if modified timing is enabled, otherwise undef i ned. For more
information about modified timing, see command-lineflag+Tiner| (1)

mul ti _schedul i ng
Returns one of the following:
di sabl ed

The emulator has only one scheduler thread. The emulator does not have SMP support, or have been started
with only one scheduler thread.

bl ocked

The emulator has more than one scheduler thread, but all scheduler threads except one are blocked. That is,
only one scheduler thread schedules Erlang processes and executes Erlang code.

bl ocked_nor nal

The emulator has more than one scheduler thread, but all normal scheduler threads except one are blocked.
Notice that dirty schedulers are not blocked, and can schedule Erlang processes and execute native code.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 213

erlang

enabl ed

The emul ator has more than one schedul er thread, and no scheduler threads are blocked. That is, all available
scheduler threads schedule Erlang processes and execute Erlang code.

See also erl ang: system flag(mul ti _schedul i ng, Bl ockSt at e)
erl ang: system.info(nulti_schedul i ng_bl ockers),
erl ang: system.info(normal _nmulti_schedul i ng_bl ockers), and

erl ang: system i nfo(schedul ers).
mul ti _schedul i ng_bl ockers

Returns alist of Pi ds when multi-scheduling is blocked, otherwise the empty list is returned. The Pi dsin the
list represent all the processes currently blocking multi-scheduling. A Pi d occurs only once in the list, even if
the corresponding process has blocked multiple times.

See also erl ang: system flag(multi_schedul i ng, Bl ockSt at e)
erl ang: system.info(nulti_scheduling),
erl ang: system_ i nfo(nornmal _nul ti _schedul i ng_bl ockers), and

erl ang: system i nfo(schedul ers).

ni f_version
Returns a string containing the version of the Erlang NIF interface used by the runtime system. It is on the form
"<major ver>.<minor ver>".

normal _nul ti _schedul i ng_bl ockers

Returnsalist of Pi dswhen normal multi-scheduling isblocked (that is, all normal schedulersbut oneisblocked),
otherwise the empty list is returned. The Pi dsin the list represent all the processes currently blocking normal
multi-scheduling. A Pi d occurs only once in the list, even if the corresponding process has blocked multiple

times.

See aso erl ang: system flag(multi_schedul i ng, Bl ockSt at e)
erl ang: system.info(nulti_scheduling),

erl ang: system.info(nmulti_schedul i ng_bl ockers), and

erl ang: system.i nfo(schedul ers).
otp_rel ease

Returns a string containing the OTP release number of the OTP release that the currently executing ERTS
application is part of.

As from Erlang/OTP 17, the OTP release number corresponds to the major OTP version number. No
erl ang: syst em i nf o() argument givestheexact OTPversion. Thisisbecausetheexact OTPversioninthe
general caseisdifficult to determine. For more information, see the description of versionsin System principles
in System Documentation.

0s_nonotoni c_ti me_source
Returns alist containing information about the source of OS monatonic time that is used by the runtime system.

If [] isreturned, no OS monotonic timeisavailable. Thelist contains two-tuples with Key s asfirst element, and
Val ues as second element. The order of these tuples is undefined. The following tuples can be part of the list,
but more tuples can be introduced in the future:

{function, Function}

Funct i on isthe name of the function used. This tuple always exists if OS monotonic time is available
to the runtime system.

214 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{clock_id, d ockld}

Thistuple only existsif Funct i on can be used with different clocks. Cl ockl d corresponds to the clock
identifier used when calling Funct i on.

{resol uti on, OGshbnotoni cTi neResol uti on}

Highest possible resolution of current OS monotonic time source as parts per second. If no resolution
information can be retrieved from the OS, GsMbnot oni cTi neResol uti on is set to the resolution
of the time unit of Functi ons return value. That is, the actual resolution can be lower than
GsMonot oni cTi neResol uti on. Notice that the resolution does not say anything about the accuracy
or whether the precision aligns with the resolution. Y ou do, however, know that the precision is not better
than GsMonot oni cTi meResol uti on.

{ext ended, Extended}

Ext ended equalsyes if the range of time values has been extended; otherwise Ext ended equals no.
The range must be extended if Funct i on returns valuesthat wrap fast. Thistypically isthe case when the
return valueis a 32-bit value.

{parallel, Parallel}

Par al | el equalsyes if Functi oniscalledinparallel frommultiplethreads. If itisnot calledin parallel,
because calls must be seriadized, Par al | el equalsno.

{time, OsMonotoni cTi e}
GsMonot oni cTi me equals current OS monotonic timeinnat i ve time unit.
0s_system ti ne_source
Returns alist containing information about the source of OS system time that is used by the runtime system.

Thelist contains two-tuples with Keysasfirst element, and Val uesas second element. The order if these tuples
is undefined. The following tuples can be part of the list, but more tuples can be introduced in the future:

{function, Function}
Funct i on isthe name of the funcion used.
{clock_id, d ockld}

Existsonly if Funct i on can be used with different clocks. Cl ockl d corresponds to the clock identifier
used when calling Funct i on.

{resol ution, OsSystenii neResol uti on}

Highest possible resolution of current OS system time source as parts per second. If no resolution
information can be retrieved from the OS, OCsSyst entli neResol uti on is set to the resolution
of the time unit of Functi ons return value. That is, the actual resolution can be lower than
OGsSyst enili meResol uti on. Notice that the resolution does not say anything about the accuracy or
whether the precision do align with the resolution. Y ou do, however, know that the precision is not better
than Gs Sy st enili neResol uti on.

{parallel, Parallel}

Par al | el equalsyes if Functi oniscalledinparallel frommultiplethreads. If itisnot calledin parallel,
because calls needs to be serialized, Par al | el egualsno.

{tinme, OsSysteniine}
GsSyst endli me equals current OS system timein nat i ve time unit.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 215

erlang

port_parallelism
Returns the default port parallelism scheduling hint used. For more information, see command-line argument
+sppinerl (1).

port_count

Returns the number of ports currently existing at the local node. The valueisgiven asan integer. Thisisthe same
value asreturned by | engt h(er| ang: ports()), but moreefficient.

port limt

Returns the maximum number of simultaneously existing ports at the local node as an integer. This limit can be
configured at startup by using command-line flag +Qiner| (1) .

process_count

Returns the number of processes currently existing at the local node. The valueis given as an integer. Thisisthe
same value asreturned by | engt h(processes()), but more efficient.

process_limt

Returns the maximum number of simultaneously existing processes at the local node. The value is given as an
integer. Thislimit can be configured at startup by using command-lineflag +Piner| (1) .

procs

Returns a binary containing a string of process and port information formatted as in Erlang crash dumps. For
more information, see section How to interpret the Erlang crash dumps in the User's Guide.

schedul er _bi nd_t ype
Returnsinformation about how the user has requested schedulers to be bound or not bound.

Notice that although a user has requested schedulers to be bound, they can silently have failed to bind. To inspect
the scheduler bindings, call er | ang: syst em i nf o(schedul er _bi ndi ngs) .

For more information, see command-line argument +sbt in erl (1) and
erl ang: system i nf o(schedul er _bi ndi ngs) .

schedul er _bi ndi ngs
Returnsinformation about the currently used scheduler bindings.

A tuple of a size equal to erl ang: system i nfo(schedul ers) is returned. The tuple elements
are integers or the atom unbound. Logica processor identifiers are represented as integers. The Nth
element of the tuple equals the current binding for the scheduler with the scheduler identifier equal to
N. For example, if the schedulers are bound, el ement (erl ang: system i nf o(schedul er _i d),
erl ang: system i nf o(schedul er _bi ndi ngs)) returnsthe identifier of the logical processor that the
calling processis executing on.

Notice that only schedulers online can be bound to logical processors.

For more information, see command-line argument +sbt in erl (1) and
erl ang: system i nfo(schedul ers_onli ne).

schedul er _id

Returns the scheduler ID (Schedul erld) of the scheduler thread that the calling process is
executing on. Schedul erld is a postive integer, where 1 <= Schedul erld <=
erl ang: system.i nfo(schedul ers).

Seealso erl ang: system i nf o(schedul ers).

216 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

schedul ers

Returns the number of scheduler threads used by the emulator. Scheduler threads online schedules Erlang
processes and Erlang ports, and execute Erlang code and Erlang linked-in driver code.

The number of scheduler threadsis determined at emulator boot time and cannot be changed later. However, the
number of schedulers online can be changed at any time.

See aso erl ang: system fl ag(schedul ers_onli ne, Schedul ersOnl i ne),
erl ang: system i nfo(schedul ers_onli ne), erl ang: system.info(schedul er _id),
erl ang: system fl ag(mul ti _scheduling, Bl ockSt at e)
erl ang: system.info(nulti_scheduling),

erl ang: system.info(normal _nulti_schedul i ng_bl ockers) and

erl ang: system.info(nulti_schedul i ng_bl ockers).
schedul ers_online

Returns the number of schedulers online. The scheduler identifiers of schedulers online satisfy the relationship 1
<= Schedul erld <= erl ang: system. i nfo(schedul ers_online).

For more information, see erl ang: system i nf o(schedul ers) and
erl ang: system fl ag(schedul ers_online, Schedul ersOnline).
snp_support

Returnst r ue if the emulator has been compiled with SMP support, otherwisef al se isreturned.
start _tine
TheErlang monotonictimeinnat i ve timeunit at the time when current Erlang runtime system instance started.
Seeadso erl ang: system.info(end_tine).
system versi on
Returns a string containing version number and some important properties, such as the number of schedulers.
system architecture
Returns a string containing the processor and OS architecture the emulator is built for.
t hr eads
Returnst r ue if the emulator has been compiled with thread support, otherwise f al se isreturned.
t hr ead_pool _si ze

Returns the number of async threads in the async thread pool used for asynchronous driver calls (
erl _driver:driver_async()). Thevaueisgiven asan integer.

time_correction

Returns a boolean value indicating whether time correction is enabled or not.
time_of f set

Returns the state of the time offset:

prelimnary

The time offset is preliminary, and will be changed and finalized later. The preliminary time offset is used
during the preliminary phase of the single time warp mode.

final

Thetime offset isfinal. Thiseither because no time warp modeisused, or because the time offset have been
finalized when single time warp mode is used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 217

erlang

vol atil e
Thetime offset isvolatile. That is, it can change at any time. Thisis because multi-time warp modeis used.
ti me_war p_node
Returns avalue identifying the time warp mode that is used:

no_time_warp
The notime warp modeis used.
single_tine_warp
The single time warp modeis used.
multi _time_warp
The multi-time warp mode is used.
tol erant _ti neof day

Returns whether a pre ERTS 7.0 backwards compatible compensation for sudden changes of system time is
enabl ed or di sabl ed. Such compensationisenabl ed when thetime offsetisf i nal , and time correction
is enabled.

trace_control _word

Returnsthe value of the node trace control word. For moreinformation, seefunction get _t cwin section Match
Secificationsin Erlang in the User's Guide.

update_cpu_info

The runtime system rereads the CPU information available and updates its internally stored information about
the detected CPU topology and the number of logical processors configured, online, and available.

If the CPU information has changed since the last time it was read, the atom changed isreturned, otherwise the
atom unchanged. If the CPU information has changed, you probably want to adjust the number of schedulers
online. Y ou typically want to have as many schedulers online as logical processors available.

version

Returns a string containing the version number of the emulator.
wor dsi ze

Sameas{wor dsi ze, internal}.
{wor dsi ze, internal}

Returns the size of Erlang term words in bytes as an integer, that is, 4 is returned on a 32-bit architecture, and
8 isreturned on a pure 64-hit architecture. On a halfword 64-bit emulator, 4 is returned, as the Erlang terms are
stored using a virtual word size of half the system word size.

{wordsi ze, external}

Returns the true word size of the emulator, that is, the size of apointer. The value is given in bytes as an integer.
On apure 32-hit architecture, 4 is returned. On both a half word and on a pure 64-bit architecture, 8 is returned.

Argument schedul er has changed name to schedul er _i d to avoid mix up with argument schedul ers.
Argument schedul er wasintroduced in ERTS 5.5 and renamed in ERTS 5.5.1.

erlang:system monitor() -> MonSettings
Types:

218 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

MonSettings = undefined | {MonitorPid, Options}
MonitorPid = pid()
Options = [system nonitor_option()]
system monitor option() =
busy port |
busy dist port |
{long gc, integer() >= 0} |
{long schedule, integer() >= 0} |
{large heap, integer() >= 0}

Returns the current system monitoring settings set by erl ang: system nonitor/2 as {Moni torPid,
Opt i ons}, orundef i ned if no settings exist. The order of the options can be different from the one that was set.

erlang:system monitor(Arg) -> MonSettings
Types:
Arg = MonSettings = undefined | {MonitorPid, Options}
MonitorPid = pid()
Options = [system nonitor_option()]
system monitor option() =
busy port |
busy dist port |
{long gc, integer() >= 0} |
{long schedule, integer() >= 0} |
{large heap, integer() >= 0}

When called with argument undef i ned, al system performance monitoring settings are cleared.

Calling the function with {MbnitorPid, Options} as argument is the same as caling

erl ang: system noni tor (Moni torPid, Options).
Returns the previous system monitor settingsjust like er | ang: syst em noni t or/ 0.

erlang:system monitor(MonitorPid, Options) -> MonSettings
Types:
MonitorPid = pid()
Options = [system nonitor_option()]
MonSettings = undefined | {OldMonitorPid, 0ldOptions}
OldMonitorPid = pid()
0ldOptions = [system nmonitor_option()]
system monitor option() =
busy port |
busy dist port |
{long gc, integer() >= 0} |
{long schedule, integer() >= 0} |
{large heap, integer() >= 0}

Sets the system performance monitoring options. Moni t or Pi d is alocal process identifier (pid) receiving system

monitor messages. The second argument isalist of monitoring options:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 219

erlang

{long_gc, Tine}

If a garbage collection in the system takes at least Ti me wall clock milliseconds, a message { noni t or,
GcPid, long_gc, |Info} issenttoMonitorPid.GePidisthe pidthat was garbage collected. | nf o is
alist of two-element tuples describing the result of the garbage collection.

One of the tuples is {ti nmeout, GcTine}, where GcTi e is the time for the garbage collection
in milliseconds. The other tuples are tagged with heap_si ze, heap_bl ock_si ze, stack_si ze,
nmbuf _si ze, ol d_heap_si ze, and ol d_heap_bl ock_si ze. These tuples are explained in the
description of trace messagegc_mi nor _start (seeerl ang: trace/ 3). New tuples can be added, and the
order of thetuplesinthel nf o list can be changed at any time without prior notice.

{l ong_schedul e, Ti ne}

If a process or port in the system runs uninterrupted for at least Ti ne wall clock milliseconds, a message
{monitor, PidOrPort, |ong_schedule, |nfo} issentto MnitorPid.PidOPort isthe
process or port that was running. | nf o isalist of two-element tuples describing the event.

If api d(),thetuples{timeout, MIlis},{in, Location},and{out, Location} arepresent,
where Locat i on iseither an MFA ({ Modul e, Function, Arity}) describing the function where the
process was scheduled in/out, or the atom undef i ned.

If aport(),thetuples{ti meout, MI1lis} and{port_op, Op} arepresent. Op isone of proc_si g,
ti meout,i nput,out put,event,ordi st_cnd, depending on which driver callback was executing.

proc_si g isan internal operation and is never to appear, while the others represent the corresponding driver
callbacks t i meout , ready_i nput, ready_out put, event, and out put v (when the port is used by
distribution). ValueM | 1'i s intuplet i meout informs about the uninterrupted execution time of the process
or port, which always is egqual to or higher than the Ti ne value supplied when starting the trace. New tuples
can be added to the | nf o list in afuture release. The order of the tuplesin the list can be changed at any time
without prior notice.

This can be used to detect problems with NIFs or drivers that take too long to execute. 1 msis considered agood

maximum timefor adriver callback or aNIF. However, atime-sharing systemisusually to consider everything <

100 msas"possible" and fairly "normal”. However, longer schedul etimes can indicate swapping or amisbehaving

NIF/driver. Misbehaving NIFsand drivers can cause bad resource utilization and bad overall system performance.
{large_heap, Size}

If agarbage collection in the system resultsin the allocated size of aheap being at least Si ze words, a message
{moni tor, CGcPid, |arge_heap, |nfo} issenttoMnitorPid.GcPidandl nfo arethesameas
for | ong_gc earlier, except that the tuple tagged with t i neout isnot present.

The monitor messageis sent if the sum of the sizes of all memory blocks allocated for all heap generations after
agarbage collection is equal to or higher than Si ze.

When a processiskilled by max_heap_si ze, it iskilled before the garbage collection is complete and thus
no large heap message is sent.

busy_port

If a process in the system gets suspended because it sends to a busy port, a message { noni t or, SusPi d,
busy_port, Port} issenttoMonitor Pi d.SusPi d isthe pid that got suspended when sending to Por t .

busy dist_port

If a process in the system gets suspended because it sends to a process on a remote node whose inter-node
communication was handled by a busy port, a message { noni tor, SusPid, busy dist_port,
Port} issentto MonitorPi d. SusPi d isthe pid that got suspended when sending through the inter-node
communication port Port .

Returns the previous system monitor settingsjust like er | ang: syst em noni t or/ 0.

220 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If amonitoring process gets so large that it itself startsto cause system monitor messages when garbage collecting,
the messages enlarge the process message queue and probably make the problem worse.

Keep the monitoring process neat and do not set the system monitor limitstoo tight.

Failures:

badar g

If Moni t or Pi d does not exist.
badar g

If Moni t or Pi d isnot alocal process.

erlang:system profile() -> ProfilerSettings
Types:
ProfilerSettings = undefined | {ProfilerPid, Options}
ProfilerPid = pid() | port()
Options = [system profile_option()]
system profile option() =
exclusive |
runnable ports |
runnable procs |
scheduler |
timestamp |
monotonic_timestamp |
strict monotonic timestamp

Returns the current system profiling settings set by erl ang: system profile/2 as {ProfilerPid,
Opt i ons},orundef i ned if thereare no settings. The order of the options can be different from the onethat was set.

erlang:system profile(ProfilerPid, Options) -> ProfilerSettings
Types:
ProfilerPid = pid() | port() | undefined
Options = [system profile_option()]
ProfilerSettings =
undefined | {pid() | port(), [systemprofile_option()]1}
system profile option() =
exclusive |
runnable ports |
runnable procs |
scheduler |
timestamp |
monotonic timestamp |
strict monotonic_ timestamp

Sets system profiler options. Prof i | er Pi d isalocal processidentifier (pid) or port receiving profiling messages.
The receiver is excluded from all profiling. The second argument isalist of profiling options:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 221

erlang

excl usi ve

If a synchronous call to a port from a process is done, the calling process is considered not runnable during the
call runtimeto the port. The calling processisnotified asi nact i ve, and later act i ve when the port callback
returns.

nmonot oni c_ti mest anp

Time stamps in profile messages use Erlang monotonic time. The time stamp (Ts) has the same format and value
as produced by er | ang: nonot oni c_t i ne(nanosecond) .

runnabl e_procs

If aprocessis put into or removed from the run queue, amessage, { profile, Pid, State, Ma, Ts},
issentto Pr of i | er Pi d. Running processesthat are reinserted into the run queue after having been pre-empted
do not trigger this message.

runnabl e_ports

If aport is put into or removed from the run queue, amessage, { profil e, Port, State, 0, Ts},is
sentto Profi | er Pi d.

schedul er

If ascheduler isput to sleep or awoken, amessage, { prof i | e, schedul er, 1d, State, NoScheds,
Ts},issenttoProfil erPid.

strict_nonotonic_tinestanp

Time stamps in profile messages consist of Erlang monotonic time and a monotonically
increasing integer. The time stamp (Ts) has the same format and value as produced by
{erl ang: nonot oni c_ti me(nanosecond), erl ang: uni que_i nteger ([nonotonic])}.

ti mestanp

Time stamps in profile messages include a time stamp (Ts) that has the same form as returned by
erl ang: now() . Thisis also the default if no time stamp flag is specified. If cpu_t i mest anp has been
enabled through er | ang: t r ace/ 3, thisalso effects the time stamp produced in profiling messages when flag
ti mest anp isenabled.

erl ang: syst em profi | e behavior can change in afuture release. |

erlang:system time() -> integer()
Returns current Erlang systemtimeinnat i ve time unit.

Cdling erlang:systemtine() is equivdent to erl ang: nonotoni c_time() +
erlang:tinme_offset().

Thistimeisnot amonotonically increasing timein the general case. For more information, see the documentation
of time warp modesin the User's Guide.

erlang:system time(Unit) -> integer()
Types:

222 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Unit = time_unit()
Returns current Erlang system time converted into the Uni t passed as argument.

Calling erl ang: systemtime(Unit) is equivalent to
erl ang: convert _tine_unit(erlang:systemtinme(), native, Unit).

Thistimeisnot amonotonically increasing timein the general case. For moreinformation, see the documentation
of time warp modesin the User's Guide.

term_to binary(Term) -> ext_binary()
Types.
Term = term()
Returns a binary data object that is the result of encoding Ter maccording to the Erlang external term format.

This can be used for various purposes, for example, writing aterm to afilein an efficient way, or sending an Erlang
term to some type of communications channel not supported by distributed Erlang.

> Bin = term to binary(hello).
<<131,100,0,5,104,101,108,1608,111>>
> hello = binary to term(Bin).
hello

Seealso binary to ternil.

There is no guarantee that this function will return the same encoded representation for the same term. |

term _to binary(Term, Options) -> ext_binary()

Types:
Term = term()
Options =
[compressed |
{compressed, Level :: 0..9} |
{minor version, Version :: 0..2}]

Returns a binary data object that is the result of encoding Ter maccording to the Erlang external term format.

If option conpr essed isprovided, the external term format is compressed. The compressed format is automatically
recognized by bi nary_to_t erni 1 asfrom Erlang/OTP R7B.

A compression level can be specified by giving option { conpr essed, Level }.Level isaninteger with range
0..9, where:

e 0 - Nocompressionisdone (it isthe same as giving no conpr essed option).

e 1 - Takesleast time but may not compress as well as the higher levels.

e 6 - Default level when option conpr essed is provided.

e 9 - Takesmost time and tries to produce a smaller result. Notice "tries’ in the preceding sentence; depending on
the input term, level 9 compression either does or does not produce a smaller result than level 1 compression.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 223

erlang

Option{ m nor _ver si on, Ver si on} can be used to control some encoding details. This option was introduced
in Erlang/OTP R11B-4. The valid valuesfor Ver si on are;

0

Floats are encoded using atextual representation. This option is useful to ensure that rel eases before Erlang/OTP
R11B-4 can decode resulting binary.

This version encode atoms that can be represented by alatinl string using latinl encoding while only atoms that
cannot be represented by latinl are encoded using utf8.

Thisisas of Erlang/OTP 17.0 the default. It forces any floats in the term to be encoded in a more space-efficient
and exact way (namely in the 64-bit IEEE format, rather than converted to a textual representation). As from
Erlang/OTP R11B-4, bi nary_t o_t er n1 1 can decode this representation.

This version encode atoms that can be represented by alatinl string using latinl encoding while only atoms that
cannot be represented by latinl are encoded using utf8.

Drops usage of the latinl atom encoding and unconditionally use utf8 encoding for all atoms. This will be
changed to the default in a future major release of Erlang/OTP. Erlang/OTP systems as of R16B can decode this
representation.

Seealso binary to terni 1.

throw(Any) -> no _return()
Types.

Any = term()

A non-local return from afunction. If evaluated within acat ch, cat ch returnsvalue Any. Example:

> catch throw({hello, there}).
{hello, there}

Failure: nocat ch if not evaluated within a catch.

time() -> Time
Types:

Time = cal endar:time()

Returnsthe currenttimeas{ Hour, M nute, Second}.

The time zone and Daylight Saving Time correction depend on the underlying OS. Example:

> time().
{9,42,44}

erlang:time offset() -> integer()

Returnsthe current time offset between Erlang monotonictimeand Erlang systemtimeinnat i ve timeunit. Current
time offset added to an Erlang monotonic time gives corresponding Erlang system time.

The time offset may or may not change during operation depending on the time warp mode used.

224 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

A change in time offset can be observed at slightly different pointsin time by different processes.

If the runtime system isin multi-time warp mode, the time offset is changed when the runtime system detects that
the OS system time has changed. The runtime system will, however, not detect thisimmediately when it occurs. A
task checking the time offset is scheduled to execute at least once a minute; so, under normal operation thisis to
be detected within a minute, but during heavy load it can take longer time.

erlang:time offset(Unit) -> integer()
Types:
Unit = time_unit()
Returns the current time offset between Erlang monotonic time and Erlang system time converted into the Uni t
passed as argument.

Sameascaling erl ang: convert _time_unit(erlang:time_offset(), native, Unit) however
optimized for commonly used Uni t s.

erlang:timestamp() -> Timestamp
Types:
Timestamp = tinestanp()

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

Returns current Erlang system time on the format { MegaSecs, Secs, M croSecs}. This format is
the same as os:tinmestanp/ 0 and the deprecated erl ang: now 0 use. The reason for the existence
of erlang:timestanp() is purely to smplify use for existing code that assumes this time stamp
format. Current Erlang system time can more efficiently be retrieved in the time unit of your choice using
erl ang: systemtinme/ 1.

Theerl ang: ti mest anp() BIFisequivaent to:

timestamp() ->
ErlangSystemTime = erlang:system time(microsecond),
MegaSecs = ErlangSystemTime div 1000000000000,
Secs = ErlangSystemTime div 1000000 - MegaSecs*1000000,
MicroSecs = ErlangSystemTime rem 1000000,
{MegaSecs, Secs, MicroSecs}.

It, however, uses anative implementation that does not build garbage on the heap and with slightly better performance.

Thistimeisnot amonotonically increasing timein the general case. For moreinformation, see the documentation
of time warp modesin the User's Guide.

tl(List) -> term()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 225

erlang

List = [term(), ...]

Returnsthetail of Li st , that is, the list minus the first element, for example:

> tl([geesties, guilies, beasties]).
[guilies, beasties]

Allowed in guard tests.
Failure: badar g if Li st istheempty list[] .

erlang:trace(PidPortSpec, How, FlagList) -> integer()
Types:
PidPortSpec =
pid() |
port() |
all |
processes |
ports |
existing |
existing processes |
existing ports |
new |
new processes |
new ports

How = boolean()
FlagList = [trace_flag()]

trace flag() =
all |
send |
'receive’ |
procs |
ports |
call |
arity |
return to |
silent |
running |
exiting |
running procs |
running ports |
garbage collection |
timestamp |
cpu_timestamp |
monotonic timestamp |
strict monotonic timestamp |
set on spawn |
set on first spawn |
set on link |
set on first link |
{tracer, pid() | port()} |

226 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{tracer, module(), term()}

Turnson (if How == t rue) or off (if How == f al se) thetraceflagsin FlI agLi st for the process or processes
represented by Pi dPor t Spec.

Pi dPor t Spec iseither aprocessidentifier (pid) for alocal process, aport identifier, or one of the following atoms:

al |
All currently existing processes and ports and all that will be created in the future.
processes
All currently existing processes and al that will be created in the future.
ports
All currently existing ports and all that will be created in the future.
exi sting

All currently existing processes and ports.
exi sting_processes

All currently existing processes.
exi sting_ports

All currently existing ports.
new

All processes and ports that will be created in the future.
new_processes

All processes that will be created in the future.
new_ports

All ports that will be created in the future.

Fl agLi st can contain any number of the following flags (the "message tags' refers to the list of trace
nmessages):

al |
Setsal trace flagsexceptt r acer andcpu_ti mest anp, which arein their nature different than the others.
send
Traces sending of messages.
Messagetags. send and send_t o_non_exi sti ng_process.
'receive'
Traces receiving of messages.
Messagetags. ' recei ve'.
call
Traces certain function calls. Specify which function callsto trace by calling er | ang: t race_pattern/ 3.
Messagetags. cal | and return_from
sil ent

Used with the cal | traceflag. Thecal | ,return_fromandr et urn_t o trace messages are inhibited if
thisflag is set, but they are executed as normal if there are match specifications.

Silent mode is inhibited by executing erl ang:trace(_, false, [silent]|_]), or by a match
specification executing the function { si | ent, fal se}.

Thesi | ent trace flag facilitates setting up a trace on many or even all processes in the system. The trace can
then be activated and deactivated using the match specification function{ si | ent , Bool }, giving ahigh degree
of control of which functions with which arguments that trigger the trace.

Messagetags: cal |, return_fromand r et urn_t o. Or rather, the absence of.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 227

erlang

return_to

Usedwiththecal | traceflag. Tracesthereturn from atraced function back toitscaller. Only worksfor functions
traced with option| ocal to erl ang:trace_pattern/ 3.

The semantics is that a trace message is sent when a call traced function returns, that is, when a chain of tail
recursive calls ends. Only one trace message is sent per chain of tail recursive cals, so the properties of tail
recursivenessfor function callsare kept whiletracing with thisflag. Usingcal | andr et ur n_t o tracetogether
makes it possible to know exactly in which function a process executes at any time.

To get trace messages containing return values from functions, usethe{r et ur n_t r ace} match specification
action instead.

Messagetags: return_to.
procs
Traces process-related events.

Message tags: spawn, spawned, exit, register, unregister, I|ink, unlink,
getting_linked,and getting_unlinked.

ports
Traces port-related events.

Message tags. open, cl osed, register, unr egi ster, getting linked, and
getting_unlinked.

runni ng

Traces scheduling of processes.

Messagetags: i n and out .
exiting

Traces scheduling of exiting processes.

Messagetags. i n_exi ting, out _exiting,and out_exited.
runni ng_procs

Traces scheduling of processesjust liker unni ng. However, this option also includes schedul e events when the
process executes within the context of a port without being scheduled out itself.

Messagetags: i n and out .
runni ng_ports

Traces scheduling of ports.

Messagetags. i n and out .
gar bage_col |l ection

Traces garbage collections of processes.

Messagetags. gc_mi nor _start, gc_max_heap_si ze,and gc_m nor _end.
ti mestanp

Includes a time stamp in al trace messages. The time stamp (Ts) has the same form as returned by
erl ang: now().

cpu_ti mestanp

A global trace flag for the Erlang node that makes al trace time stamps using flag t i mest anp to be in
CPU time, not wall clock time. That is, cpu_ti nest anp is not be used if nonot oni c_ti nest anp

228 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

or strict_nonotonic_tinestanp is enabled. Only alowed with Pi dPort Spec==al | . If the host
machine OS does not support high-resolution CPU time measurements, t r ace/ 3 exits with badar g. Notice
that most OS do not synchronize this value across cores, so be prepared that time can seem to go backwards
when using this option.

nmonot oni c_ti mestanp

Includes an Erlang monotonic time time stamp in all trace messages. The time stamp (Ts) has the same
format and value as produced by er | ang: nonot oni c_t i ne(nanosecond) . This flag overrides flag
cpu_ti nmest anp.

strict_nonotonic_tinmestanp

Includes an time stamp consisting of Erlang monotonic time and a monotonically increasing integer
in all trace messages. The time stamp (Ts) has the same format and value as produced by {
erl ang: nonot oni c_ti ne(nanosecond), erlang: uni que_i nteger([nonotonic])}. This
flag overridesflag cpu_t i mest anp.

arity

Usedwiththecal | traceflag.{M F, Arity} isspecifiedinsteadof {M F, Args} incall trace messages.
set _on_spawn

Makes any process created by atraced processinherit itstrace flags, including flag set _on_spawn.
set_on_first_spawn

Makes the first process created by a traced process inherit its trace flags, excluding flag
set_on_first_spawn.

set _on_Ilink
Makes any process linked by atraced processinherit its trace flags, including flag set _on_I i nk.
set_on first _link

Makes the first process linked to by a traced process inherit its trace flags, excluding flag
set_on_first_link.

{tracer, Tracer}

Specifies where to send the trace messages. Tr acer must be the processidentifier of alocal process or the port
identifier of alocal port.

{tracer, TracerModul e, TracerState}

Specifies that a tracer module is to be called instead of sending a trace message. The tracer module can then
ignore or change the trace message. For more details on how to write atracer module, seeer| _tracer(3).

If not racer isspecified, the calling process receives all the trace messages.

The effect of combining set _on_first_Iink withset_on_link isthe same asset_on_first_link
alone. Likewisefor set _on_spawn andset _on_first_spawn.

The tracing process receives the trace messages described in the following list. Pi d is the process identifier of the
traced process in which the traced event has occurred. The third tuple element is the message tag.

If flag ti mestanp, strict_nonotoni c_tinmestanp, or ronot oni c_ti mest anp is specified, the first
tuple element ist race_t s instead, and the time stamp is added as an extra element last in the message tuple. If
multipletimestamp flagsarepassed, t i mest anp hasprecedenceoverstri ct _nonot oni ¢_ti mest anp,which
in turn has precedence over nonot oni ¢_t i mest anp. All time stamp flags are remembered, so if two are passed
and the one with highest precedence later is disabled, the other one becomes active.

Trace messages:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 229

erlang

{trace, PidPort, send, Msg, To}
When Pi dPort sends message Msg to process To.
{trace, PidPort, send_to_non_existing_process, Mg, To}
When Pi dPort sends message Msg to the non-existing process To.
{trace, PidPort, 'receive', Mg}

When Pi dPort receives message Msg. If Msg is set to time-out, areceive statement can have timed out, or the
process received a message with the payload t i neout .

{trace, Pid, call, {M F, Args}}
When Pi d calls atraced function. The return values of calls are never supplied, only the call and its arguments.
Traceflagar i t y can beused to change the contents of thismessage, sothat Ar i t y isspecifiedinstead of Ar gs.
{trace, Pid, return_to, {M F, Arity}}

When Pi d returns to the specified function. Thistrace messageis sent if both theflagscal | andreturn_to
are set, and the function is set to be traced on local function calls. The messageisonly sent when returning from a
chain of tail recursivefunction calls, where at least onecall generated acal | trace message (that is, the functions
match specification matched, and { nessage, fal se} wasnot an action).

{trace, Pid, return_from {M F, Arity}, ReturnVal ue}

When Pi d returns from the specified function. This trace message is sent if flag cal | is set, and the function
has a match specification withar et urn_t race orexcepti on_t race action.

{trace, Pid, exception_from {M F, Arity}, {d ass, Value}}

When Pi d exits from the specified function because of an exception. Thistrace messageis sent if flagcal | is
set, and the function has a match specification with an excepti on_t r ace action.

{trace, Pid, spawn, Pid2, {M F, Args}}
When Pi d spawns anew process Pi d2 with the specified function call as entry point.
Ar gs issupposed to be the argument list, but can be any term if the spawn is erroneous.
{trace, Pid, spawned, Pid2, {M F, Args}}
When Pi d is spawned by process Pi d2 with the specified function call as entry point.
Ar gs issupposed to be the argument list, but can be any term if the spawn is erroneous.
{trace, Pid, exit, Reason}
When Pi d exitswith reason Reason.
{trace, PidPort, register, RegNane}
When Pi dPort getsthe name RegNane registered.
{trace, PidPort, unregister, RegNane}

When Pi dPor t gets the name RegNane unregistered. This is done automatically when a registered process
or port exits.

{trace, Pid, link, Pid2}
When Pi d linksto aprocess Pi d2.
{trace, Pid, unlink, Pid2}

When Pi d removes the link from a process Pi d2.

230 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{trace, PidPort, getting_linked, Pid2}

When Pi dPort getslinked to aprocess Pi d2.

{trace, PidPort, getting_unlinked, Pid2}

When Pi dPor t getsunlinked from a process Pi d2.

{trace, Pid, exit, Reason}

When Pi d exits with reason Reason.

{trace, Port, open, Pid, Driver}

When Pi d opensanew port Por t with therunning Dri ver .

Dri ver isthe name of the driver as an atom.

{trace, Port, closed, Reason}

When Por t closeswith Reason.

{trace, Pid, in| in_exiting, {M F, Arity} | 0}

When Pi d is scheduled to run. The process runsin function{M F, Arity}.On some rare occasions, the
current function cannot be determined, then the last element is 0.

{trace, Pid, out | out_exiting | out_exited, {M F, Arity} | 0}

When Pi d is scheduled out. The process was running in function {M, F, Arity}. On some rare occasions, the
current function cannot be determined, then the last element is 0.

{trace, Port, in, Command | 0}

When Por t is scheduled to run. Command is the first thing the port will execute, it can however run several
commands before being scheduled out. On some rare occasions, the current function cannot be determined, then
the last element is 0.

The possible commands are cal |, cl ose, comrand, connect, control , flush,info,link, open,
and unl i nk.

{trace, Port, out, Conmand | O}

When Por t isscheduled out. Thelast command run was Command. On somerare occasions, the current function
cannot be determined, then the last element is 0. Command can contain the same commands asi n

{trace, Pid, gc_minor_start, Info}

Sent when a young garbage collection is about to be started. | nf o is alist of two-element tuples, where the
first element is akey, and the second is the value. Do not depend on any order of the tuples. The following keys
are defined:

heap_si ze

The size of the used part of the heap.
heap_bl ock_si ze

The size of the memory block used for storing the heap and the stack.
ol d_heap_si ze

The size of the used part of the old heap.
ol d_heap_bl ock_si ze

The size of the memory block used for storing the old heap.
stack_si ze

The size of the stack.
recent _size

The size of the data that survived the previous garbage collection.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 231

erlang

nbuf size
The combined size of message buffers associated with the process.
bi n_vheap_si ze
Thetotal size of unique off-heap binaries referenced from the process heap.
bi n_vheap_bl ock_si ze
The total size of binaries allowed in the virtual heap in the process before doing a garbage collection.
bi n_ol d_vheap_si ze
Thetotal size of unique off-heap binaries referenced from the process old heap.
bi n_ol d_vheap_bl ock_si ze
The total size of binaries allowed in the virtual old heap in the process before doing a garbage collection.

All sizesarein words.
{trace, Pid, gc_nax_heap_size, I|nfo}

Sent when the max_heap_si ze isreached during garbage collection. | nf o contains the same kind of list as
inmessagegc_st art, but the sizes reflect the sizes that triggered nax_heap_si ze to be reached.

{trace, Pid, gc_mnor_end, |nfo}
Sent when young garbage collection is finished. | nf o contains the same kind of list as in message
gc_mi nor _start, but the sizes reflect the new sizes after garbage collection.

{trace, Pid, gc_mjor_start, Info}
Sent when fullsweep garbage collection is about to be started. | nf o contains the same kind of list asin message
gc_mnor_start.

{trace, Pid, gc_mmjor_end, Info}
Sent when fullsweep garbage collection is finished. | nf 0 contains the same kind of list as in message
gc_m nor _start, but the sizes reflect the new sizes after a fullsweep garbage collection.

If the tracing process/port dies or the tracer module returnsr enrove, the flags are silently removed.

Each process can only be traced by onetracer. Therefore, attempts to trace an already traced processfail.

Returns a number indicating the number of processes that matched Pi dPor t Spec. If Pi dPort Spec isa process
identifier, thereturn valueis 1. If Pi dPort Spec isal | orexi sti ng, thereturn valueisthe number of processes
running. If Pi dPor t Spec isnew, the return valueis 0.

Failure: badar g if the specified arguments are not supported. For example, cpu_t i mest anp is not supported on
al platforms.

erlang:trace delivered(Tracee) -> Ref
Types:
Tracee = pid() | all
Ref = reference()
The delivery of trace messages (generated by erlang:trace/3, seq_trace(3), or
erl ang: syst em profil e/ 2)isdislocated on the time-line compared to other eventsin the system. If you know

that Tr acee has passed some specific point in its execution, and you want to know when at least all trace messages
corresponding to events up to this point have reached the tracer, useer | ang: trace_del i ver ed(Tr acee).

When it is guaranteed that all trace messages are delivered to the tracer up to the point that Tr acee reached at the
timeof thecal toerl ang: trace_del i vered(Tracee) ,thena{trace_del i vered, Tracee, Ref}
message is sent to the caller of er | ang: trace_del i vered(Tracee) .

Noticethat messaget r ace_del i ver ed doesnot imply that trace messages have been delivered. Instead it implies
that all trace messages that are to be deliver ed have been delivered. It is not an error if Tr acee isnot, and has not

232 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

been traced by someone, but if thisisthe case, no trace messages have been delivered whenthet r ace_del i ver ed
message arrives.

Notice that Tr acee must refer to a process currently or previously existing on the same node as the caller of
erl ang:trace_del i vered(Tracee) resides on. The special Tr acee atom al | denotes all processes that
currently are traced in the node.

When used together with a Tracer Module, any message sent in the trace callback is guaranteed to have reached its
recipient beforethet r ace_del i ver ed messageis sent.

Example: ProcessAisTr acee, port Bistracer, and process Cisthe port owner of B. Cwantsto close B when A exits.
To ensure that the trace is not truncated, Ccan call er | ang: t race_del i ver ed(A) when A exits, and wait for
message{trace_del i vered, A, Ref} beforeclosingB.

Failure: badar g if Tracee does not refer to a process (dead or alive) on the same node as the caller of
erl ang:trace_del i vered(Tracee) resideson.

erlang:trace _info(PidPortFuncEvent, Item) -> Res
Types:
PidPortFuncEvent =
pid() |
port() |
new |
new processes |
new_ports |
{Module, Function, Arity} |
on load |
send |
'receive’
Module = module()
Function = atom()
Arity = arity()
Item =
flags |
tracer |
traced |
match spec |
meta |
meta match spec |
call count |
call time |
all
Res = trace_info_return()

trace info return() =
undefined |
{flags, [trace_info_flag()1} |
{tracer, pid() | port() | [1} |
{tracer, module(), term()} |
trace_info_itemresult() |
{all, [trace_info_itemresult()] | false | undefined}

trace info item result() =
{traced, global | local | false | undefined} |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 233

erlang

{match spec, trace_match_spec() | false | undefined} |
{meta, pid() | port() | false | undefined | []1} |
{meta, module(), term()} |
{meta match spec, trace_match_spec() | false | undefined} |
{call count, integer() >= 0 | boolean() | undefined} |
{call time,
[{pid(),
integer() >
integer() >
)
I

0,
0,
0}] |

integer() >
boolean()
undefined}

trace info flag()
send |
'receive’ |
set on_spawn |
call |
return to |
procs |
set on first spawn |
set on link |
running |
garbage collection |
timestamp |
monotonic timestamp |
strict monotonic timestamp |
arity

trace match spec() =
[{[term()] | ' ' | match_variable(), [term()], [term()]1}]

match variable() = atom()
Approximation of '$1' | '$2' | '$3'| ...
Returns trace information about a port, process, function, or event.

Toget information about aport or process, Pi dPort FuncEvent istobeaprocessidentifier (pid), port identifier,
or one of the atoms new, new_pr ocesses, or new_ports. Theatom newor new_pr ocesses means that the
default trace state for processes to be created is returned. The atom new_por t s means that the default trace state
for portsto be created is returned.

Valid | t ensfor ports and processes.
flags

Returns a list of atoms indicating what kind of traces is enabled for the process. The list is empty if no
traces are enabled, and one or more of the followings atoms if traces are enabled: send, ' r ecei ve',
set_on_spawn, call, return_to, procs, ports, set_on_first_spawn, set_on_link,
runni ng, runni ng_procs, running_ports, silent, exiting, nmonotonic_timestanp,
strict_nonotoni c_tinestanp, garbage _col | ection, ti mestanp, and arity. The order is
arbitrary.

tracer

Returnstheidentifier for process, port, or atuple containing the tracer modul e and tracer state tracing this process.
If this processis not traced, the return valueis|[] .

234 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

To get information about a function, Pi dPort FuncEvent is to be the three-element tuple { Modul e,

Function, Arity} ortheatomon_| oad. Nowildcards are allowed. Returnsundef i ned if the function does
not exist, or f al se if the function is not traced. If Pi dPort FuncEvent ison_| oad, the information returned
refers to the default value for code that will be loaded.

Valid | t ensfor functions:
traced

Returns gl obal if this function is traced on global function calls, | ocal if this function is traced on local
function calls (that is, local and global function calls), and f al se if local or global function calls are not traced.

mat ch_spec

Returns the match specification for thisfunction, if it has one. If the functionislocally or globally traced but has
no match specification defined, the returned valueis|] .

nmet a

Returns the meta-trace tracer process, port, or trace module for this function, if it has one. If the function is not
meta-traced, the returned value is f al se. If the function is meta-traced but has once detected that the tracer
processisinvalid, thereturned valueis|[] .

met a_mat ch_spec

Returns the meta-trace match specification for this function, if it has one. If the function is meta-traced but has
no match specification defined, the returned valueis|[] .

call _count

Returns the call count value for this function or t r ue for the pseudo function on_| oad if call count tracing is
active. Otherwisef al se isreturned.

Seealso erl ang:trace_pattern/ 3.
call tine

Returns the call time values for this function or t r ue for the pseudo function on_I oad if call timetracing is
active. Otherwisef al se isreturned. The call timevaluesreturned, [{ Pi d, Count, S, Us}],isalistof
each process that executed the function and its specific counters.

Seealso erl ang:trace_pattern/ 3.
al |

Returnsalist containingthe{ 1t em Val ue} tuplesfor all other items, or returnsf al se if notracingisactive
for this function.

To get information about an event, Pi dPor t FuncEvent isto be one of theatomssend or' recei ve' .
Onevalid | t emfor events exists:
mat ch_spec

Returns the match specification for this event, if it hasone, or t r ue if no match specification has been set.

Thereturnvalueis{ 1t em Val ue}, whereVal ue isthe requested information as described earlier. If apid for a
dead process was specified, or the name of a non-existing function, Val ue isundef i ned.

erlang:trace pattern(MFA, MatchSpec) -> integer() >= 0

Types:
MFA = trace_pattern_nfa() | send | 'receive'
MatchSpec =

(MatchSpeclList :: trace_match_spec()) |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 235

erlang

boolean() |
restart |
pause

trace pattern mfa() = {atom(), atom(), arity() | ' '} | on_ load
trace match spec() =

[{[term()] | ' ' | match_variable(), [term()], [term()]1}]
match variable() = atom()
Approximation of '$1' | '$2' | '$3'| ...

Thesameas erl ang: trace_pattern(Event, MatchSpec, []), retained for backward compatibility.

erlang:trace pattern(MFA :: send, MatchSpec, FlagList :: []) ->
integer() >= 0
Types.
MatchSpec = (MatchSpecList :: trace_match_spec()) | boolean()

trace match spec() =
[{[term()] | '_' | match_variable(), [term()], [term()]}]

match variable() = atom()
Approximation of '$1' | '$2' | '$3'| ...

Sets trace pattern for message sending. Must be combined with er | ang: t r ace/ 3 to set the send trace flag for
one or more processes. By default all messages sent from send traced processesaretraced. To limit traced send events
based on the message content, the sender and/or the receiver, useer | ang: t race_pattern/ 3.

Argument Mat chSpec can take the following forms:
Mat chSpeclLi st

A list of match specifications. The matching isdoneonthelist[Recei ver, Msg] .Recei ver istheprocess
or port identity of the receiver and Msg is the message term. The pid of the sending process can be accessed
with the guard function sel f/ 0. An empty list isthe same ast r ue. For more information, see section Match
Soecificationsin Erlang in the User's Guide.

true

Enables tracing for all sent messages (from send traced processes). Any match specification is removed. This
isthe default.

fal se
Disables tracing for al sent messages. Any match specification is removed.
Argument Fl agLi st must be[] for send tracing.
Thereturn valueisalways 1.
Examples:

Only trace messages to a specific process Pi d:
> erlang:trace pattern(send, [{[Pid, ' '1,[1,[1}1, [1).
1

Only trace messages matching{reply, _}:

> erlang:trace pattern(send, [{[' ', {reply,' '}1,[1,[1}1, [1).
1

236 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Only trace messages sent to the sender itself:

> erlang:trace pattern(send, [{['$1', ' '1,[{'=:=",'$1"',{self}}1,[1}1, [1]).
1
Only trace messages sent to other nodes:

> erlang:trace pattern(send, [{['$1', ' '1,[{'=/="',{node,'$1'},{node}}1,[1}]1, [1).
1

| A match specification for send trace can use all guard and body functions except cal | er. |

erlang:trace pattern(MFA :: 'receive', MatchSpec, FlagList :: []) ->
integer() >= 0
Types.
MatchSpec = (MatchSpecList :: trace_nmtch_spec()) | boolean()

trace match spec() =
[{[term()] | ' ' | match_variable(), [term()], [term()]1}]

match variable() = atom()

Approximation of '$1' | '$2' | '$3'| ...
Sets trace pattern for message receiving. Must be combined with er| ang: trace/ 3 to set the ' recei ve'
trace flag for one or more processes. By default all messages received by 'recei ve' traced processes

are traced. To limit traced receive events based on the message content, the sender and/or the receiver, use
erlang:trace_pattern/3.

Argument Mat chSpec can take the following forms;
Mat chSpeclLi st

A list of match specifications. The matching isdone on the list [Node, Sender, Msg] . Node isthe node
name of the sender. Sender isthe processor port identity of the sender, or theatom undef i ned if thesender is
not known (which can be the case for remote senders). Ms g isthe message term. The pid of the receiving process
can be accessed with the guard function sel f/ 0. Anempty lististhesameast r ue. For moreinformation, see
section Match Specificationsin Erlang in the User's Guide.

true

Enablestracing for all received messages(to' r ecei ve' traced processes). Any match specificationisremoved.
Thisisthe default.

fal se
Disables tracing for all received messages. Any match specification is removed.
Argument Fl agLi st must be[] for receivetracing.
The return value is always 1.
Examples:
Only trace messages from a specific process Pi d:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 237

erlang

> erlang:trace pattern('receive', [{['_',Pid, ' '1,[1,[1}1, [1).
1

Only trace messages matching{reply, _}:
> erlang:trace pattern('receive', [{[' ',' ', {reply,' '}1,[1,[1}1, [1).
1

Only trace messages from other nodes:

> erlang:trace pattern('receive', [{['$1', ' ', ' '1,[{'=/=","'$1"',{node}}],[1}1, [1).
1

A match specification for ' recei ve' trace can use all guard and body functions except cal |l er,
i s_seq_trace, get_seq_t oken, set_seq_t oken, enabl e_trace, disable_trace, trace,
sil ent,and process_dunp.

erlang:trace pattern(MFA, MatchSpec, FlagList) ->
integer() >= 0
Types:
MFA = trace _pattern_nfa()
MatchSpec =
(MatchSpeclList :: trace_match_spec()) |
boolean() |
restart |
pause
FlagList = [trace_pattern_flag()]
trace pattern mfa() = {atom(), atom(), arity() | ' '} | on_load
trace match spec() =
[{[term()] | ' ' | match_variable(), [term()], [term()]}]

trace pattern flag() =
global |
local |
meta |
{meta, Pid :: pid()} |
{meta, TracerModule :: module(), TracerState :: term()} |
call count |
call time
match variable() = atom()
Approximation of '$1' | '$2' | '$3'| ...
Enables or disables call tracing for one or more functions. Must be combined with er | ang: t r ace/ 3 to set the
cal | traceflag for one or more processes.

Conceptually, call tracing works as follows. Inside the Erlang virtual machine, a set of processes and a set of functions
areto betraced. If atraced process calls a traced function, the trace action is taken. Otherwise, nothing happens.

To add or remove one or more processes to the set of traced processes, useer | ang: trace/ 3.

238 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

To add or remove functions to the set of traced functions, useer | ang: trace_pattern/ 3.

The BIF erl ang: trace_pattern/ 3 can also add match specifications to a function. A match specification
comprises a pattern that the function arguments must match, a guard expression that must evaluatetot r ue, and an
action to be performed. The default action is to send a trace message. If the pattern does not match or the guard fails,
the action is not executed.

Argument MFAistobeatuple, suchas{ Modul e, Function, Arity},ortheatomon_| oad (described below).
It can be the module, function, and arity for a function (or a BIF in any module). The atom ' ' can be used as a
wildcard in any of the following ways:

{Modul e, Function,' '}

All functions of any arity named Funct i on in module Modul e.
{Module," '," "}

All functionsin module Mbdul e.
¢

All functionsin all loaded modules.

Other combinations, such as { Modul e, ' ', Ari ty}, are not alowed. Local functions match wildcards only if
option| ocal isinFl agLi st.

If argument MFA is the atom on_| oad, the match specification and flag list are used on al modules that are newly
loaded.

Argument Mat chSpec can take the following forms:
fal se

Disables tracing for the matching functions. Any match specification is removed.
true

Enables tracing for the matching functions. Any match specification is removed.
Mat chSpeclLi st

A list of match specifications. An empty list isequivalenttot r ue. For adescription of match specifications, see
section Match Specificationsin Erlang in the User's Guide.

restart

For the Fl agLi st options cal | _count and cal | _ti ne: restarts the existing counters. The behavior is
undefined for other Fl agLi st options.

pause

For the Fl agLi st optionscal | _count and cal | _ti ne: pauses the existing counters. The behavior is
undefined for other Fl agLi st options.

Parameter FI agLi st isalist of options. The following are the valid options:
gl obal

Turnson or off call tracing for global function calls(that is, calls specifying the module explicitly). Only exported
functions match and only global calls generate trace messages. Thisisthe default.

| ocal

Turnson or off call tracing for all types of function calls. Trace messages are sent whenever any of the specified
functions are called, regardless of how they arecalled. If flagr et ur n_t o isset for the process, ar et urn_t o
message is also sent when this function returns to its caller.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 239

erlang

meta | {meta, Pid} | {meta, TracerModule, Tracer State}

Turns on or off meta-tracing for all types of function calls. Trace messages are sent to the tracer whenever any
of the specified functions are called. If no tracer is specified, sel f () isused as adefault tracer process.

Meta-tracing traces all processes and does not care about the process trace flagsset by er | ang: t r ace/ 3, the
traceflagsareinstead fixedto[cal | , ti mestanp].

The match specification function { r et ur n_t r ace} workswith meta-trace and sends its trace message to the
same tracer.

call _count

Starts(Mat chSpec == true) or stops(Mat chSpec == f al se) call count tracing for all types of function
calls. For every function, a counter isincremented when the function is called, in any process. No process trace
flags need to be activated.

If call count tracing is started while already running, the count is restarted from zero. To pause running counters,
use Mat chSpec == pause. Paused and running counters can be restarted from zero with Mat chSpec ==
restart.

To read the counter value, use er |l ang: trace_i nf o/ 2.
call tine

Starts (Mat chSpec == true) or stops (Mat chSpec == f al se) cal timetracing for all types of function
calls. For every function, a counter is incremented when the function is called. Time spent in the function is
accumulated in two other counters, seconds and microseconds. The counters are stored for each call traced
process.

If call time tracing is started while aready running, the count and time restart from zero. To pause running
counters, use Mat chSpec == pause. Paused and running counters can be restarted from zero with
Mat chSpec == restart.

To read the counter value, use er | ang: trace_i nf o/ 2.

Theoptionsgl obal and| ocal aremutually exclusive, and gl obal isthedefault (if no options are specified). The
optionscal | _count and et a perform akind of local tracing, and cannot be combined with gl obal . A function
can be globally or locally traced. If global tracing is specified for a set of functions, then local, meta, call time, and
call count tracing for the matching set of local functionsis disabled, and conversely.

When disabling trace, the option must match the type of trace set on thefunction. That is, local tracing must be disabled
with option | ocal and global tracing with option gl obal (or no option), and so on.

Part of amatch specification list cannot be changed directly. If afunction has a match specification, it can be replaced
with a new one. To change an existing match specification, use the BIF er | ang: trace_i nf o/ 2 to retrieve the
existing match specification.

Returns the number of functions matching argument MFA. Thisis zero if none matched.

trunc(Number) -> integer()
Types:
Number = number()
Returns an integer by truncating Nurnber , for example:

> trunc(5.5).
5

Allowed in guard tests.

240 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

tuple size(Tuple) -> integer() >= 0
Types:
Tuple = tuple()
Returns an integer that is the number of elementsin Tupl e, for example:

> tuple size({morni, mulle, bwange}).
3

Allowed in guard tests.

tuple to list(Tuple) -> [term()]
Types:
Tuple = tuple()
Returns alist corresponding to Tupl e. Tupl e can contain any Erlang terms. Example:

> tuple to list({share, {'Ericsson B', 163}}).
[share,{'Ericsson B',163}]

erlang:unique integer() -> integer()

Generates and returns an integer unique on current runtime system instance. The same as calling
erl ang: uni que_integer([]).

erlang:unique integer(ModifierList) -> integer()
Types:

ModifierList = [Modifier]

Modifier = positive | monotonic

Generatesand returnsan integer unique on current runtime systeminstance. Theinteger isuniqueinthe sensethat this
BIF, using the same set of modifiers, does not return the same integer more than once on the current runtime system
instance. Each integer value can of course be constructed by other means.

By default, when[] ispassedasMbdi f i er Li st , both negative and positiveintegers can bereturned. Thisto usethe
range of integersthat do not need heap memory allocation asmuch as possible. By default the returned integersare also
only guaranteed to be unique, that is, any returned integer can be smaller or larger than previously returned integers.

Modi fi ers:
positive

Returns only positive integers.

Notice that by passing the posi t i ve modifier you will get heap allocated integers (bignums) quicker.
monotonic

Returns strictly monotonically increasing integers corresponding to creation time. That is, the integer returned
isaways larger than previously returned integers on the current runtime system instance.

These values can be used to determine order between events on the runtime system instance. That is, if both X =
erl ang: uni que_i nt eger ([nonot oni c]) andY = erl ang: uni que_i nt eger ([monot oni c])
are executed by different processes (or the same process) on the same runtime system instanceand X < Y, we
know that X was created before Y.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 241

erlang

Strictly monotonically increasing values are inherently quite expensive to generate and scales poorly. This
is because the values need to be synchronized between CPU cores. That is, do not pass the nonot oni ¢
modifier unless you really need strictly monotonically increasing values.

All valid Modi f i er scan be combined. Repeated (valid) Modi f i er sintheModi fi er Li st areignored.

Theset of integersreturned by er | ang: uni que_i nt eger/ 1 using different setsof Modi f i er swill overlap.
For example, by calling uni que_i nt eger ([nmonot oni ¢]), and uni que_i nt eger ([positive,
nonot oni c]) repeatedly, you will eventually see some integers that are returned by both calls.

Failures:

badar g

if Modi fi erLi st isnotaproper list.
badar g

if Modi fi er isnotavalid modifier.

erlang:universaltime() -> DateTime
Types:
DateTime = cal endar:datetinme()

Returns the current date and time according to Universal Time Coordinated (UTC) in the form {{ Year,
Mont h, Day}, {Hour, M nut e, Second}} if supported by the underlying OS. Otherwise
erlang: uni versal ti ne() isequivdenttoerl| ang: | ocal ti me().Example:

> erlang:universaltime().
{{1996,11,6},{14,18,43}}

erlang:universaltime to localtime(Universaltime) -> Localtime
Types:
Localtime = Universaltime = cal endar:datetine()

Converts Universal Time Coordinated (UTC) date and time to local date and time in the form { { Year, Mont h,
Day}, {Hour, M nute, Second}} if supported by the underlying OS. Otherwise no conversion is done, and
Uni ver sal ti nme isreturned. Example:

> erlang:universaltime to localtime({{1996,11,6},{14,18,43}}).
{{1996,11,7},{15,18,43}}

Failure: badar g if Uni ver sal t i ne denotes an invalid date and time.

unlink(Id) -> true
Types:
Id = pid() | port()
Removesthelink, if thereis one, between the calling process and the process or port referred to by | d.
Returnst r ue and does not fail, even if thereisnolink to | d, or if | d does not exist.

242 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Onceunl i nk(1 d) hasreturned, it is guaranteed that the link between the caller and the entity referredto by | d has
no effect on the caller in the future (unless the link is setup again). If the caller istrapping exits,an{' EXI T', Id,
_} message from the link can have been placed in the caller's message queue before the call.

Notice that the {' EXIT', 1d, _} message can be the result of the link, but can also be the result of I d
calling exi t / 2. Therefore, it can be appropriate to clean up the message queue when trapping exits after the call
tounl i nk(1d),asfollows:

unlink(Id),
receive
{'EXIT', Id, } ->
true
after 0 ->
true
end

Before Erlang/OTP R11B (ERTS5.5) unl i nk/ 1 behaved completely asynchronously, that is, the link was active
until the "unlink signal" reached the linked entity. This had an undesirable effect, as you could never know when
you were guaranteed not to be effected by the link.

The current behavior can be viewed as two combined operations: asynchronously send an "unlink signal" to the
linked entity and ignore any future results of the link.

unregister(RegName) -> true
Types:
RegName = atom()
Removes the registered name RegNan®e associated with a process identifier or a port identifier, for example:

> unregister(db).
true

Users are advised not to unregister system processes.
Failure: badar g if RegNare isnot aregistered name.

whereis (RegName) -> pid() | port() | undefined
Types:
RegName = atom()

Returnsthe processidentifier or port identifier with the registered name RegNan®e. Returnsundef i ned if the name
is not registered. Example:

> whereis(db).
<0.43.0>

erlang:yield() -> true

Voluntarily lets other processes (if any) get a chance to execute. Using this functionissimilar tor ecei ve after
1 -> ok end, exceptthatyi el d() isfaster.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 243

erlang

Thereisseldom or never any need to usethis BIF, especially in the SMP emulator, as other processes have achance
to run in another scheduler thread anyway. Using this BIF without a thorough grasp of how the scheduler works
can cause performance degradation.

244 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

init

Erlang module

Thismoduleis prel oaded and containsthe codefor thei ni t system processthat coordinates the startup of the system.
Thefirst function evaluated at startup isboot (Boot Ar gs) , where Boot Ar gs isalist of command-line arguments
supplied to the Erlang runtime system from the local operating system; seeer | (1) .

i ni t reads the boot script, which contains instructions on how to initiate the system. For more information about
boot scripts, seescri pt (4).

i ni t also contains functions to restart, reboot, and stop the system.

Exports

boot (BootArgs) -> no return()
Types:
BootArgs = [binary()]
Starts the Erlang runtime system. This function is called when the emulator is started and coordinates system startup.
Boot Ar gs areall command-line arguments except the emulator flags, that is, flagsand plain arguments; seeer | (1) .

i nit interprets some of the flags, see section Command-Line Flags below. The remaining flags ("user flags")
and plain arguments are passed to the i nit loop and can be retrieved by calling get _ar gunent s/ 0 and
get pl ai n_argunent s/ 0, respectively.

get argument(Flag) -> {ok, Arg} | error
Types.

Flag = atom()

Arg = [Values :: [string()]]

Returnsall values associated with the command-line user flag Fl ag. If FI ag isprovided several times, each Val ues
isreturned in preserved order. Example:

%erl -abc-ad

i;.init:getfargument(a).
{ok, [["b","c"],["d"]1]1}

The following flags are defined automatically and can be retrieved using this function:
r oot
The installation directory of Erlang/OTP, $ROOT:

2> init:get argument(root).
{ok,[["/usr/local/otp/releases/otp_beam solaris8 r10b_patched"]]}

pr ognare
The name of the program which started Erlang:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 245

init

3> init:get argument(progname).
{ok, [["erl"]11}

horme
The home directory:

4> init:get argument(home).
{ok, [["/home/harry"]1}

Returnser r or if novaueisassociated with Fl ag.

get arguments() -> Flags
Types.
Flags = [{Flag :: atom(), Values :: [string()]}]
Returns all command-line flags and the system-defined flags, seeget _ar gunent / 1.

get plain arguments() -> [Arg]
Types:
Arg = string()
Returns any plain command-line arguments as alist of strings (possibly empty).

get status() -> {InternalStatus, ProvidedStatus}

Types.
InternalStatus = internal _status()
ProvidedStatus = term()

internal status() = starting | started | stopping

The current status of thei ni t process can be inspected. During system startup (initialization), | nt er nal St at us
isstarting,andProvi dedSt at us indicates how far the boot script has been interpreted. Each { pr ogr ess,

I nf o} term interpreted in the boot script affects Pr ovi dedSt at us, that is, Pr ovi dedSt at us gets the value
of | nf o.

reboot() -> ok

All applications are taken down smoothly, all code is unloaded, and all ports are closed before the system terminates.
If command-line flag - hear t was specified, the heart program tries to reboot the system. For more information,
seeheart (3).

To limit the shutdown time, the time i ni t is alowed to spend taking down applications, command-line flag -
shut down_t i ne isto be used.

restart() -> ok

The system isrestarted inside the running Erlang node, which meansthat the emulator is not restarted. All applications
are taken down smoothly, all code is unloaded, and all ports are closed before the system is booted again in the same
way asinitialy started. The same Boot Ar gs are used again.

To limit the shutdown time, the time i ni t is allowed to spend taking down applications, command-line flag -
shut down_t i ne isto be used.

246 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

script id() -> Id
Types.
Id = term()

Gets the identity of the boot script used to boot the system. | d can be any Erlang term. In the delivered boot scripts,
I dis{Name, Vsn}.Name andVsn are strings.

stop() -> ok
Thesameasst op(0) .

stop(Status) -> ok
Types:
Status = integer() >= 0 | string()
All applications are taken down smoothly, all code is unloaded, and al ports are closed before the system terminates

by calling hal t (St at us) . If command-lineflag - hear t was specified, the hear t program isterminated before
the Erlang node terminates. For more information, seeheart (3) .

To limit the shutdown time, the time i ni t is allowed to spend taking down applications, command-line flag -
shut down_t i ne isto be used.

Command-Line Flags

The support for loading of code from archive files is experimental. The only purpose of releasing it before it is
ready is to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in a future
release. The- code_pat h_choi ce flagisalso experimental.

Thei ni t moduleinterprets the following command-line flags:

Everything following - - up to the next flag is considered plain arguments and can be retrieved using
get _pl ai n_argunent s/ 0.

-code_pat h_choi ce Choi ce
Canbesettostrict orrel axed. It controls how each directory in the code path isto be interpreted:

e Strictly asit appearsintheboot scri pt,or

* init istobemorerelaxed andtry to find asuitable directory if it can choose from aregular ebi n directory
and an ebi n directory in an archivefile.

This flag is particular useful when you want to elaborate with code loading from archives without editing the
boot scri pt. For moreinformation about interpretation of boot scripts, seescri pt (4) . Theflag has also
asimilar effect on how the code server works; seecode(3) .

-eprmd_nodul e Modul e
Specifies the module to use for registration and lookup of node names. Defaultstoer | _epnd.
-eval Expr

Scans, parses, and evaluates an arbitrary expression Expr during system initialization. If any of these steps fail
(syntax error, parse error, or exception during evaluation), Erlang stops with an error message. In the following
example Erlang is used as a hexadecimal calculator:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 247

init

% erl -noshell -eval 'R = 16#1F+16#A0, io:format("~.16B~n", [R])"' \\
-s erlang halt
BF

If multiple - eval expressions are specified, they are evaluated sequentialy in the order specified. - eval
expressions are evaluated sequentially with - s and - r un function calls (thisalso in the order specified). Aswith
-s and - r un, an evaluation that does not terminate blocks the system initialization process.

-extra

Everything following -extra is considered plain arguments and can be retrieved using
get _pl ai n_argunent s/ 0.

-run Mod [Func [Argl, Arg2, ...]1]

Evaluates the specified function call during system initialization. Func defaults to st art . If no arguments
are provided, the function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Argl, Arg2,...] asargument. All arguments are passed as strings. If an exception is raised, Erlang stops
with an error message.

Example:

% erl -run foo -run foo bar -run foo bar baz 1 2
This starts the Erlang runtime system and eval uates the following functions:

foo:start()
foo:bar()
foo:bar(["baz", "1", "2"]).

The functions are executed sequentially in an initialization process, which then terminates normally and passes
control to the user. This meansthat a- r un call that does not return blocks further processing; to avoid this, use
some variant of spawn in such cases.

-s Mod [Func [Argl, Arg2, ...]]

Evaluates the specified function call during system initialization. Func defaults to st art . If no arguments
are provided, the function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Argl, Arg2,...] asargument. All arguments are passed as atoms. If an exception is raised, Erlang stops
with an error message.

Example:

% erl -s foo -s foo bar -s foo bar baz 1 2
This starts the Erlang runtime system and eval uates the following functions:

foo:start()
foo:bar()
foo:bar([baz, '1l', '2']).

The functions are executed sequentially in an initialization process, which then terminates normally and passes
control to the user. This means that a - s call that does not return blocks further processing; to avoid this, use
some variant of spawn in such cases.

Because of the limited length of atoms, it is recommended to use - r un instead.

248 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

init

Example
% erl -- a b -children thomas claire -ages 7 3 -- X y

1> init:get plain_arguments().
["a","b","x","y"]

2> init:get argument(children).
{ok, [["thomas",6"claire"]]}

3> init:get argument(ages).
{ok, [["7","3"11}

4> init:get argument(silly).
error

See Also
erl _priml oader(3),heart(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 249

zlib

zlib

Erlang module

Thismodule providesan API for the Zlib library (www.zlib.net). It isused to compress and decompress data. The data
format is described by RFC 1950, RFC 1951, and RFC 1952.

A typical (compress) usageis asfollows:

Z = zlib:open(),
ok = zlib:deflateInit(Z,default),

Compress = fun(end of data, Cont) -> [];
(Data, Cont) ->
[zlib:deflate(Z, Data)|Cont(Read(),Cont)]

end,
Compressed = Compress(Read(),Compress),
Last = zlib:deflate(Z, [], finish),
ok = zlib:deflateEnd(Z),
zlib:close(Z),
list_to_binary([Compressed|Last])

Inall functionserrors, {' EXI T' , { Reason, Backt r ace} }, can be thrown, where Reason describes the error.
Typical Reasonss:

badar g
Bad argument.
not initialized
The stream hasn't been initialized, eg. if i nf 1 at el ni t/ 1 wasn't caled priortoacall toi nfl at e/ 2.
not _on_control ling_process
The stream was used by a process that doesn't control it. Use set _control | i ng_process/ 2 if you need
to transfer a stream to a different process.
data_error
The data contains errors.
streamerror
Inconsistent stream state.
{need_di ctionary, Adl er 32}
Seeinfl ate/ 2.

Data Types
zstream() = term()
A zlib stream, see open/ 0.

zlevel() =

none | default | best compression | best speed | 0..9
zflush() = none | sync | full | finish
zmemlevel() = 1..9
zmethod() = deflated
zstrategy() = default | filtered | huffman_only | rle
zwindowbits() = -15..-8 | 8..47

Normally intherange-15..-8 | 8..15.

250 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href
href
href
href

zlib

Exports

adler32(Z, Data) -> CheckSum
Types.

Z = zstream()

Data = iodata()

CheckSum = integer()

Calculates the Adler-32 checksum for Dat a.

This function is deprecated and will be removed in afuturerelease. Use er | ang: adl er 32/ 1 instead.

adler32(Z, PrevAdler, Data) -> CheckSum
Types:

Z = zstream)

PrevAdler = integer()

Data = iodata()

CheckSum = integer()

Updates arunning Adler-32 checksum for Dat a. If Dat a isthe empty binary or the empty iolist, thisfunction returns
therequired initial value for the checksum.

Example:

Crc = lists:foldl(fun(Data,Crc@) ->
zlib:adler32(Z, Crc0O, Data),
end, zlib:adler32(Z,<< >>), Datas)

This function is deprecated and will be removed in afuturerelease. Use er | ang: adl er 32/ 2 instead. |

adler32 combine(Z, Adlerl, Adler2, Size2) -> Adler
Types.

Z = zstream()

Adler = Adlerl = Adler2 = Size2 = integer()

Combines two Adler-32 checksumsinto one. For two binariesor iolists, Dat al and Dat a2 with sizesof Si zel and
Si ze2, with Adler-32 checksums Ad| er 1 and Adl er 2.

This function returnsthe Adl er checksum of [Dat al, Dat a2] , requiring only Adl er 1, Adl er 2, and Si ze2.

This function is deprecated and will be removed in a future release. Use er | ang: adl er 32_conbi ne/ 3
instead.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 251

zlib

close(Z) -> ok
Types:
Z = zstream()
Closes the stream referenced by Z.

compress(Data) -> Compressed
Types:
Data = iodata()
Compressed = binary()

Compresses data with zlib headers and checksum.

crc32(Z) -> CRC
Types:
Z = zstream()
CRC = integer()
Gets the current calculated CRC checksum.

Thisfunctionisdeprecated and will be removedin afuturerelease. Use er | ang: cr ¢32/ 1 onthe uncompressed
datainstead.

crc32(Z, Data) -> CRC
Types.
Z = zstreamn()
Data = iodata()
CRC = integer()
Calculates the CRC checksum for Dat a.

This function is deprecated and will be removed in afuturerelease. Use er | ang: cr c32/ 1 instead.

crc32(Z, PrevCRC, Data) -> CRC
Types:
Z = zstream()
PrevCRC = integer()
Data = iodata()
CRC = integer()
Updates a running CRC checksum for Dat a. If Dat a is the empty binary or the empty iolist, this function returns
the required initial value for the CRC.

Example:

252 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

Crc = lists:foldl(fun(Data,Crc0) ->
zlib:crc32(Z, Crc0O, Data),
end, zlib:crc32(Z,<< >>), Datas)

|Thisfuncti0n is deprecated and will be removed in afuturerelease. Use er | ang: cr c32/ 2 instead. |

crc32 combine(Z, CRC1l, CRC2, Size2) -> CRC
Types:
Z = zstream()
CRC = CRC1 = CRC2 = Size2 = integer()
Combines two CRC checksums into one. For two binaries or iolists, Dat al and Dat a2 with sizes of Si zel and
Si ze2, with CRC checksums CRC1 and CRC2.

This function returns the CRC checksum of [Dat al, Dat a2] , requiring only CRC1, CRC2, and Si ze2.

|Thisfunctionisdeprecated and will beremoved in afuturerelease. Use er | ang: cr ¢c32_conbi ne/ 3 inﬁead.|

deflate(Z, Data) -> Compressed
Types.

Z = zstream()

Data = iodata()

Compressed = iolist()

Sameasdef | ate(Z, Data, none).

deflate(Z, Data, Flush) -> Compressed
Types.
Z = zstream()
Data = iodata()
Flush = zflush()
Compressed = iolist()
Compresses as much data as possible, and stops when the input buffer becomes empty. It can introduce some output
latency (reading input without producing any output) except when forced to flush.

If Fl ush is set to sync, al pending output is flushed to the output buffer and the output is aligned on a byte
boundary, so that the decompressor can get all input data available so far. Flushing can degrade compression for some
compression algorithms; thus, use it only when necessary.

If Fl ushissettof ul | , all output isflushed aswith sync, and the compression state is reset so that decompression
can restart from this point if previous compressed data has been damaged or if random accessis desired. Using f ul |
too often can seriously degrade the compression.

If Fl ush is set to fi ni sh, pending input is processed, pending output is flushed, and def | at e/ 3 returns.
Afterwards the only possible operations on the stream are def | at eReset/ 1 or def | at eEnd/ 1.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 253

zlib

FI ush canbesettof i ni sh immediately after def | at el ni t if all compression isto be donein one step.

Example:

zlib:deflateInit(Z),

Bl = zlib:deflate(Z,Data),

B2 = zlib:deflate(Z,<< >>,finish),
zlib:deflateEnd(Z),

list to binary([B1,B2])

deflateEnd(Z) -> ok
Types:
Z = zstream()

Ends the deflate session and cleans all data used. Notice that this function throws adat a_er r or exception if the
last call todef | at e/ 3 wasnot called with Fl ush settofi ni sh.

deflateInit(Z) -> ok
Types:

Z = zstream()
Sameaszlib:deflatelnit(Z, default).

deflateInit(Z, Level) -> ok
Types:
Z = zstream()
Level = zlevel ()
Initializes a zlib stream for compression.
Level decidesthe compression level to be used:
e 0(none), gives no compression
e 1(best_speed) givesbest speed
* 9(best _conpressi on) gives best compression

deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) ->
ok

Types.
Z = zstream()
Level = zlevel ()
Method = znet hod()
WindowBits = zwi ndowbits()
MemLevel = znenl evel ()
Strategy = zstrategy()
Initiates a zlib stream for compression.
Level
Compression level to use:

e 0(none), gives no compression

254 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

e 1 (best_speed) gives best speed

« 9(best_conpressi on) givesbest compression
Met hod

Compression method to use, currently the only supported method isdef | at ed.
W ndowBi t s

The base two logarithm of the window size (the size of the history buffer). It isto be in the range 8 through 15.
Larger valuesresult in better compression at the expense of memory usage. Defaultsto 15if defl atelnit/2
isused. A negative W ndowBi t s value suppresses the zlib header (and checksum) from the stream. Notice that
the zlib source mentions this only as a undocumented feature.

Due to a known bug in the underlying zlib library, W ndowBi t s values 8 and -8 do not work as expected.
In zlib versions before 1.2.9 values 8 and -8 are automatically changed to 9 and -9. From zlib version 1.2.9
value-8isregected causing zl i b: def | at el ni t/ 6 tofail (8 isstill changed to 9). It also seem possible
that future versions of zlib may fix this bug and start accepting 8 and -8 asis.

Conclusion: Avoid values 8 and -8 unless you know your zlib version supports them.

Menmlievel

Specifies how much memory isto be allocated for the internal compression state: Menievel =1 uses minimum
memory but is ow and reduces compression ratio; Menievel =9 uses maximum memory for optimal speed.
Defaultsto 8.

St rat egy
Tunes the compression algorithm. Use the following values:

o defaul t for normal data

« filtered fordataproduced by afilter (or predictor)

« huf f man_onl y to force Huffman encoding only (no string match)

e rl e tolimit match distances to one (run-length encoding)

Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression
agorithm is tuned to compress them better. The effect of f i | t er ed isto force more Huffman coding and less

string matching; it is somewhat intermediate between def aul t and huf f man_onl y. r | e isdesigned to be
amost asfast ashuf f man_onl y, but gives better compression for PNG image data.

St r at egy affects only the compression ratio, but not the correctness of the compressed output even if it is not
set appropriately.

deflateParams(Z, Level, Strategy) -> ok
Types:

Z = zstream()

Level = zlevel ()

Strategy = zstrategy()
Dynamically updates the compression level and compression strategy. The interpretation of Level and St r at egy
isasindef | at el ni t/ 6. This can be used to switch between compression and straight copy of the input data, or
to switch to adifferent kind of input data requiring a different strategy. If the compression level is changed, the input

available so far is compressed with the old level (and can be flushed); the new level takes effect only at the next call
of def | at e/ 3.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 255

zlib

Before the call of def | at ePar ans, the stream state must be set as for a call of def | at e/ 3, as the currently
available input may have to be compressed and flushed.

deflateReset(Z) -> ok
Types:
Z = zstream()

Equivalenttodef | at eEnd/ 1 followedby defl atel nit/ 1, 2, 6, but doesnot free and reallocate all theinternal
compression state. The stream keeps the same compression level and any other attributes.

deflateSetDictionary(Z, Dictionary) -> Adler32
Types:

Z = zstrean()

Dictionary = iodatal()

Adler32 = integer()

Initializes the compression dictionary from the specified byte sequence without producing any compressed output.

This function must be called immediately after defl atel nit/ 1, 2, 6 or def | at eReset / 1, before any call of
defl ate/ 3.

The compressor and decompressor must use the same dictionary (see i nf | at eSet Di cti onary/ 2).

The Adler checksum of the dictionary is returned.

getBufSize(Z) -> integer() >= 0
Types.

Z = zstream()
Getsthe size of the intermediate buffer.

| Thisfunction is deprecated and will be removed in a future release. |

gunzip(Data) -> Decompressed
Types.
Data = iodata()
Decompressed = binary()

Uncompresses data with gz headers and checksum.

gzip(Data) -> Compressed
Types:
Data = iodata()
Compressed = binary()

Compresses data with gz headers and checksum.

inflate(Z, Data) -> Decompressed
Types.

256 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

Z = zstream()
Data = iodatal()
Decompressed = iolist()

Equivalenttoi nfl ate(Z, Data, [])

inflate(Z, Data, Options) -> Decompressed
Types:
Z = zstream()
Data = iodata()
Options = [{exception on need dict, boolean()}]
Decompressed =
iolist() |
{need dictionary, Adler32 :: integer(), Output :: iolist()}
Decompresses as much data as possible. It can introduce some output latency (reading input without producing any
output).
Currently the only available optionis{ excepti on_on_need_di ct, bool ean()} which controls whether the

function should throw an exception when a preset dictionary is required for decompression. When set to false, a
need_di cti onary tuplewill bereturned instead. See i nf | at eSet Di cti onary/ 2 for details.

This option defaults to true for backwards compatibility but we intend to remove the exception
behavior in a future release. New code that needs to handle dictionaries manually should aways specify
{exception_on_need_dict, fal se}.

inflateChunk(Z) -> Decompressed | {more, Decompressed}
Types.

Z = zstream()

Decompressed = iolist()

This function is deprecated and will be removed in afuturerelease. Usesaf el nf | at e/ 2 instead.

Reads the next chunk of uncompressed data, initialized by i nf | at eChunk/ 2.
Thisfunction isto be repeatedly called, whileit returns{ nor e, Deconpr essed}.

inflateChunk(Z, Data) -> Decompressed | {more, Decompressed}
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 257

zlib

Z = zstream()
Data = iodatal()
Decompressed = iolist()

‘Thisfunction is deprecated and will be removed in afuturerelease. Usesaf el nf | at e/ 2 instead. ‘

Likei nf | at e/ 2, but decompresses no more data than will fit in the buffer configured through set Buf Si ze/ 2
. Isis useful when decompressing a stream with a high compression ratio, such that a small amount of compressed
input can expand up to 1000 times.

This function returns { mor e, Deconpr essed}, when there is more output available, and i nf | at eChunk/ 1
isto be used to read it.

This function can introduce some output latency (reading input without producing any output).

An exception will be thrown if a preset dictionary is required for further decompression. See
i nfl ateSetDi ctionary/ 2 for details.

Example:

walk(Compressed, Handler) ->
Z = zlib:open(),
zlib:inflateInit(Z),
% Limit single uncompressed chunk size to 512kb
zlib:setBufSize(Z, 512 * 1024),
loop(Z, Handler, zlib:inflateChunk(Z, Compressed)),
zlib:inflateEnd(Z),
zlib:close(Z).

loop(Z, Handler, {more, Uncompressed}) ->
Handler(Uncompressed),
loop(Z, Handler, zlib:inflateChunk(Z));
loop(Z, Handler, Uncompressed) ->
Handler(Uncompressed) .

inflateEnd(Z) -> ok
Types:
Z = zstream()

Endsthe inflate session and cleans all data used. Notice that thisfunction throwsadat a_er r or exception if no end
of stream was found (meaning that not all data has been uncompressed).

inflateGetDictionary(Z) -> Dictionary
Types:

Z = zstream)

Dictionary = binary()

Returns the decompression dictionary currently in use by the stream. This function must be called between
inflatelnit/1,2andinfl at eEnd.

Only supported if ERTS was compiled with zlib >= 1.2.8.

258 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

inflateInit(Z) -> ok
Types:
Z = zstrean()
Initializes a zlib stream for decompression.

inflateInit(Z, WindowBits) -> ok
Types:

Z = zstream()

WindowBits = zwi ndowbits()
Initializes a decompression session on zlib stream.

W ndowBi t s is the base two logarithm of the maximum window size (the size of the history buffer). It isto bein
the range 8 through 15. Default to 15if i nfl at el nit/ 1 isused.

If a compressed stream with a larger window size is specified as input, i nf | at e/ 2 throws the dat a_err or
exception.

A negative W ndowBi t s value makes zlib ignore the zlib header (and checksum) from the stream. Notice that the
Zlib source mentions this only as a undocumented feature.

inflateReset(Z) -> ok
Types:
Z = zstream()

Equivalent to i nf | at eEnd/ 1 followed by i nf I at el ni t/ 1, but does not free and reallocate all the internal
decompression state. The stream will keep attributes that could havebeensetby i nfl atelnit/ 1, 2.

inflateSetDictionary(Z, Dictionary) -> ok
Types:
Z = zstream()
Dictionary = iodata()
Initializes the decompression dictionary from the specified uncompressed byte sequence. This
function must be cadled as a response to an inflate operation (eg. safel nflate/2) returning

{need_dictionary, Adl er, Qut put} or in the case of deprecated functions, throwing an {' EXI T',
{{need_dictionary, Adl er}, StackTrace}} exception.

The dictionary chosen by the compressor can be determined from the Adler vaue returned or thrown
by the cal to the inflate function. The compressor and decompressor must use the same dictionary (See
defl at eSet Di cti onary/ 2).

After setting the dictionary the inflate operation should be retried without new input.
Example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 259

zlib

deprecated unpack(Z, Compressed, Dict) ->
case catch zlib:inflate(Z, Compressed) of
{'EXIT',{{need dictionary, DictID}, }} ->
ok = zlib:inflateSetDictionary(Z, Dict),
Uncompressed = zlib:inflate(Z, [1);
Uncompressed ->
Uncompressed
end.

new _unpack(Z, Compressed, Dict) ->
case zlib:inflate(Z, Compressed, [{exception on need dict, false}]) of
{need dictionary, DictId, Output} ->
ok = zlib:inflateSetDictionary(Z, Dict),
[Output | zlib:inflate(z, [1)];
Uncompressed ->
Uncompressed
end.

open() -> zstream()
Opens a zlib stream.

safeInflate(Z, Data) -> Result
Types:

Z = zstream()

Data = iodata()

Result =
{continue, Output :: iolist()} |
{finished, Output :: iolist()} |
{need dictionary, Adler32 :: integer(), Output :: iolist()}

Likei nfl at e/ 2, but returns once it has expanded beyond a small implementation-defined threshold. It's useful
when decompressing untrusted input which could have been maliciously crafted to expand until the system runs out
of memory.

Thisfunction returns{ cont i nue | fi ni shed, Qut put},whereOutput isthe datathat was decompressed in
this call. New input can be queued up on each call if desired, and the function will return { f i ni shed, Cut put}
once all queued data has been decompressed.

This function can introduce some output latency (reading input without producing any output).

If apreset dictionary is required for further decompression, this function returnsaneed_di cti onary tuple. See
i nfl ateSet Di cti onary/ 2) for details.

Example:

260 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

zlib

walk(Compressed, Handler) ->
Z = zlib:open(),
zlib:inflateInit(2),
loop(Z, Handler, zlib:safeInflate(Z, Compressed)),
zlib:inflateEnd(Z),
zlib:close(Z).

loop(Z, Handler, {continue, Output}) ->
Handler(Output),
loop(Z, Handler, zlib:safeInflate(Z, []));
loop(Z, Handler, {finished, Output}) ->
Handler(Output).

setBufSize(Z, Size) -> ok
Types.

Z = zstream()

Size = integer() >= 0
Sets the intermediate buffer size.

| This function is deprecated and will be removed in afuture release. |

set controlling process(Z, Pid) -> ok

Types:
Z = zstream()
Pid = pid()

Changes the controlling process of Z to Pi d, which must be alocal process.

uncompress(Data) -> Decompressed
Types.

Data = iodata()

Decompressed = binary()

Uncompresses data with zlib headers and checksum.

unzip(Data) -> Decompressed
Types:
Data = iodata()
Decompressed = binary()

Uncompresses data without zlib headers and checksum.

zip(Data) -> Compressed
Types.
Data = iodata()
Compressed = binary()

Compresses data without zlib headers and checksum.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 261

epmd

epmd

Command

epmd [-d|-debug] [DbgExtra...] [-address Addresses] [-port No] [-daenon] [-
rel axed_conmand_check]

Starts the port mapper daemon.
epnd [-d|-debug] [-port No] [-names|-kill]|-stop Nane]
Communicates with a running port mapper daemon.

This daemon acts as a name server on all hosts involved in distributed Erlang computations. When an Erlang node
starts, the node has a name and it obtains an address from the host OS kernel. The name and address are sent to the
epnd daemon running on the local host. In a TCP/IP environment, the address consists of the IP address and a port
number. The node name is an atom on the form of Name@ode. The job of the epnd daemon is to keep track of
which node name listens on which address. Hence, epnd maps symbolic node names to machine addresses.

The TCP/IP epnd daemon only keepstrack of the Narre (first) part of an Erlang node name. The Host part (whatever
is after the @ is implicit in the node name where the epnd daemon was contacted, as is the IP address where the
Erlang node can be reached. Consistent and correct TCP naming services are therefore required for an Erlang network
to function correctly.

Starting the port mapper daemon

Thedaemon is started automatically by commander | (1) if thenodeisto bedistributed and no running instance
is present. If automatically launched environment variables must be used to change the behavior of the daemon;
see section Environment Variables.

If argument - daenon is not specified, epnd runsasanormal program with the controlling terminal of the shell
inwhichit is started. Normally, it isto be run as a daemon.

Regular startup options are described in section Regular Options.
The DbgExt r a options are described in section DbgExtra Options.
Communicating with a running port mapper daemon
Communicating with the running epnd daemon by the epnd program is done primarily for debugging purposes.
The different queries are described in section I nteractive options.

Regular Options

These options are available when starting the name server. The name server is normally started automatically by
commander | (1) (if not aready available), but it can also be started at system startup.

-address Li st

Letsthisinstance of epnd listen only on the comma-separated list of 1P addresses and on the loopback address
(whichisimplicitly added to thelist if it has not been specified). This can also be set using environment variable
ERL_EPMD_ ADDRESS; see section Environment Variables.

-port No

Letsthisinstance of epnd listen to another TCP port than default 4369. This can also be set using environment
variable ERL_EPNMD_PORT; see section Environment Variables.

-d | -debug

Enables debug output. The more - d flags specified, the more debug output you will get (to a certain limit). This
option is most useful when the epnd daemon is not started as a daemon.

262 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

epmd

- daenon

Starts epnd detached from the controlling terminal. Logging ends up in syslog when available and correctly
configured. If the epnd daemon is started at boot, this option is definitely to be used. It is also used when
command er | automatically startsepnd.

-rel axed_command_check

Starts the eprd program with relaxed command checking (mostly for backward compatibility). This affects the
following:

e With relaxed command checking, the epnd daemon can be killed from the local host with, for example,
command epnd - ki | | even if active nodes are registered. Normally only daemons with an empty node
database can bekilled withepnd - ki | | .

e Command epnd -stop (and the corresponding messages to epnd, as can be specified using
erl _interface: ei (3))isnormaly awaysignored. Thisbecauseit can cause astrange situation where
two nodes of the same name can be alive at the same time. A node unregisters itself by only closing the
connection to epnd, which iswhy command st op was only intended for use in debugging situations.

With relaxed command checking enabled, you can forcibly unregister live nodes.

Relaxed command checking can aso be enabled by setting environment variable
ERL_EPMD RELAXED COMVAND CHECK before starting epnd.

Use relaxed command checking only on systems with very limited interactive usage.

DbgExtra Options

‘ These options are only for debugging and testing epnd clients. They are not to be used in normal operation. ‘

- packet timeout Seconds

Sets the number of seconds a connection can be inactive before epnd times out and closes the connection.
Defaults to 60.

-del ay_accept Seconds

To simulate a busy server, you can insert a delay between when epnd gets notified that a new connection is
reguested and when the connection gets accepted.

-delay_write Seconds

Also asimulation of abusy server. Inserts adelay before areply is sent.

Interactive Options

These options make epnd run as an interactive command, displaying the results of sending queries to an already
running instance of epnd. The epnd contacted is always on the local node, but option - por t can be used to select
between instances if severa are running using different ports on the host.

-port No

Contacts the epnd listening on the specified TCP port number (default 4369). This can aso be set using
environment variable ERL_EPMD_PORT; see section Environment Variables.

- nanes

Lists names registered with the currently running epnd.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 263

epmd

-kill
Kills the currently running epnd.

Killing the running epnd is only alowed if epnmd -nanes shows an empty database or if -
r el axed_conmand_check was specified when the running instance of epnd was started.

Noticethat - r el axed_command_check is specified when starting the daemon that is to accept killing when
it has live nodes registered. When running epnd interactively, - r el axed_conmand_check has no effect.
A daemon that is started without relaxed command checking must be killed using, for example, signals or some
other OS-specific method if it has active clients registered.

-stop Nane
Forcibly unregisters alive node from the epnd database.

This command can only be wused when contacting epnd instances started with flag -
rel axed_conmand_check.

Notice that relaxed command checking must enabled for the epnd daemon contacted. When running epnd
interactively, - r el axed_command_check has no effect.

Environment Variables
ERL_EPVD_ADDRESS

Can be set to a comma-separated list of |P addresses, in which case the epnd daemon will listen only on the
specified address(es) and on theloopback address (which isimplicitly added to thelist if it has not been specified).
The default behavior isto listen on all available | P addresses.

ERL_EPMD_PORT

Can contain the port number eprd will use. The default port will work fine in most cases. A different port can
be specified to allow several instances of epnd, representing independent clusters of nodes, to co-exist on the
same host. All nodesin a cluster must use the same epnd port number.

ERL_EPMD_RELAXED COMMAND_CHECK

If set before start, the epnd daemon behaves as if option - r el axed_conmand_check was specified at
startup. Consequently, if this option is set before starting the Erlang virtual machine, the automatically started
epnd acceptsthe- ki | | and - st op commands without restrictions.

Logging
On some operating systems syslog will be used for error reporting when epnd runs as a daemon. To enable the error
logging, you must edit the /etc/syslog.conf file and add an entry:

lepmd
* . *<TABs>/var/log/epmd. log

where <TABs> are at least one real tab character. Spaces are silently ignored.

Access Restrictions

The epmd daemon accepts messages from both the local host and remote hosts. However, only the query commands
are answered (and acted upon) if the query comes from a remote host. It is aways an error to try to register a node
name if the client is not a process on the same host as the epd instance is running on. Such requests are considered
hostile and the connection is closed immediately.

The following queries are accepted from remote nodes:

* Port queries, that is, on which port the node with a specified name listens

264 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

epmd

* Namelisting, that is, gives alist of all names registered on the host

To restrict access further, firewall software must be used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 265

erl

erl

Command

Theer | program startsan Erlang runtime system. The exact details (for example, whether er | isascript or aprogram
and which other programsit calls) are system-dependent.

Windows users probably want to use the wer | program instead, which runs in its own window with scrollbars and
supports command-line editing. Theer | program on Windows provides no line editing in its shell, and on Windows
95 thereis no way to scroll back to text that has scrolled off the screen. Theer | program must be used, however, in
pipelines or if you want to redirect standard input or output.

As from ERTS 5.9 (Erlang/OTP R15B) the runtime system does by default not bind schedulers to logical
processors. For more information, see system flag +sbt .

Exports

erl <arguments>

Starts an Erlang runtime system.

The arguments can be divided into emulator flags, flags, and plain arguments:
e Any argument starting with character + isinterpreted as an emulator flag.

Asindicated by the name, emulator flags control the behavior of the emulator.
« Any argument starting with character - (hyphen) isinterpreted as aflag, which isto be passed to the Erlang part
of the runtime system, more specifically tothei ni t system process, seei ni t (3).

Thei ni t processitself interprets some of these flags, the init flags. It also stores any remaining flags, the user
flags. The latter can beretrieved by callingi ni t : get _ar gunent/ 1.
A small number of "-" flags exist, which now actually are emulator flags, see the description below.

* Plain arguments are not interpreted in any way. They are also stored by thei ni t process and can be retrieved by
calingi ni t: get _pl ai n_ar gunent s/ 0. Plain arguments can occur before thefirst flag, or after a- - flag.
Also, the - ext r a flag causes everything that follows to become plain arguments.

Examples:

% erl +W w -sname arnie +R 9 -s my init -extra +bertie
(arnie@host)1> init:get argument(sname).

{ok,[["arnie"]1]}
(arnie@host)2> init:get plain_arguments().
["+bertie"]

Here+W wand +R 9 are emulator flags. -s ny_i ni t isaninit flag, interpreted by i nit.-snane arni eisa
user flag, stored by i ni t . It isread by Kernel and causes the Erlang runtime system to become distributed. Finally,
everything after - ext r a (that is, +ber t i e) isconsidered as plain arguments.

266 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

% erl -myflag 1

1> init:get argument(myflag).
{ok, [["1"]11}

2> init:get plain arguments().

[l

Here the user flag - myf | ag 1 is passed to and stored by the i ni t process. It is a user-defined flag, presumably
used by some user-defined application.

Flags

In the following lit, init flags are marked "(init flag)". Unless otherwise specified, all other flags are user flags, for
which the values can be retrieved by calling i ni t : get _argunent/ 1. Notice that the list of user flags is not
exhaustive, there can be more application-specific flags that instead are described in the corresponding application
documentation.

- - (init flag)
Everything following - - up to the next flag (- f | ag or +f | ag) is considered plain arguments and can be
retrieved usingi ni t : get _pl ai n_ar gunent s/ 0.

-Application Par Val

Sets the application configuration parameter Par to the value Val for the application Appl i cati on; see
app(4) and application(3).

-args_file Fil eNane

Command-line arguments are read from the file Fi | eNane. The arguments read from the file replace flag '-
args_fil e Fil eNane'on theresulting command line.

ThefileFi | eNane isto beaplain text file and can contain comments and command-line arguments. A comment
begins with a # character and continues until the next end of line character. Backslash (\\) is used as quoting
character. All command-line arguments accepted by er | areallowed, alsoflag-args_fil e Fi |l eNane.Be
careful not to cause circular dependencies between files containing flag - ar gs_fi | e, though.

Theflag - ext r a istreated in special way. Its scope ends at the end of the file. Argumentsfollowingan- extr a
flag are moved on the command line into the - ext r a section, that is, the end of the command line following
after an - ext r a flag.

-async_shel | _start

The initial Erlang shell does not read user input until the system boot procedure has been completed (Erlang/
OTP 5.4 and later). This flag disables the start synchronization feature and lets the shell start in parallel with
the rest of the system.

-boot File

Specifiesthe name of the boot file, Fi | e. boot , whichisused to start the system; seei ni t (3) . UnlessFi | e
contains an absolute path, the system searchesfor Fi | e. boot inthe current and $ROCT/ bi n directories.

Defaultsto $ROOT/ bi n/ start . boot .
-boot _var Vvar Dir

If the boot script contains a path variable Var other than $ROOT, this variable is expanded to Di r . Used when
applications are installed in another directory than $ROOT/ | i b; see syst ool s: nake_script/ 1,2 in
SASL.

-code_pat h_cache
Enables the code path cache of the code server; seecode(3) .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 267

erl

-conpile Mbdl Mbd2 ...

Compiles the specified modules and then terminates (with non-zero exit code if the compilation of some file did
not succeed). Implies- noi nput .

Not recommended; use er | ¢ instead.
-config Config

Specifies the name of a configuration file, Confi g. conf i g, which is used to configure applications; see
app(4) and application(3).

-connect _all false

If thisflag ispresent, gl obal doesnot maintain afully connected network of distributed Erlang nodes, and then
global name registration cannot be used; see gl obal (3) .

- cooki e Cooki e
Obsolete flag without any effect and common misspelling for - set cooki e. Use- set cooki e instead.
- det ached

Startsthe Erlang runtime system detached from the system consol e. Useful for running daemons and backgrounds
processes. Implies- noi nput .

-enu_args
Useful for debugging. Prints the arguments sent to the emulator.
-enmu_type Type

Start an emulator of adifferent type. For example, to start the lock-counter emualator, use- ermu_t ype | cnt.
(The emulator must already be built. Use the conf i gur e option - - enabl e- | ock- count er to build the
lock-counter emulator.)

-env Vari abl e Val ue

Setsthe host OS environment variable Var i abl e to thevaue Val ue for the Erlang runtime system. Example:

% erl -env DISPLAY gin:0

In this example, an Erlang runtime system is started with environment variable DI SPLAY setto gi n: 0.
- eprmd_nodul e Modul e (init flag)

Configures the module responsible to communicate to epmd. Defaultstoer | _epnd.
-eval Expr (initflag)

Makesi ni t evaluate the expression Expr ; seei ni t (3) .
- extr a (init flag)

Everything following -extra is considered plan aguments and can be retrieved using
init:get plain_argunents/O0.

- heart
Starts heartbeat monitoring of the Erlang runtime system; see heart (3) .
- hi dden

Startsthe Erlang runtime system as ahidden node, if it isrun asadistributed node. Hidden nodes always establish
hidden connections to al other nodes except for nodes in the same globa group. Hidden connections are not
published on any of the connected nodes, that is, none of the connected nodes are part of theresult fromnodes/ 0
on the other node. See a'so hidden global groups; gl obal _gr oup(3).

268 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

-hosts Hosts

Specifiesthe | P addressesfor the hosts on which Erlang boot serversarerunning, see er | _boot _server (3).
Thisflag ismandatory if flag - | oader i net ispresent.

ThelP addresses must be specified in the standard form (four decimal numbers separated by periods, for example,
"150. 236. 20. 74" . Hosts names are not acceptable, but a broadcast address (preferably limited to the local
network) is.

-id Id

Specifies the identity of the Erlang runtime system. If it isrun as a distributed node, | d must be identical to the
name supplied together with flag - snamne or - nane.

-init_debug
Makesi ni t write some debug information while interpreting the boot script.
-instr (emulator flag)

Selectsan instrumented Erlang runtime system (virtual machine) to run, instead of the ordinary one. When running
an instrumented runtime system, some resource usage data can be obtained and analyzed using thei nst r unment
module. Functionally, it behaves exactly like an ordinary Erlang runtime system.

-1 oader Loader

Specifies the method used by erl priml oader to load Erlang modules into the system; see
erl _prim|l oader(3).TwoLoader methods are supported:

« efil e, which means usetheloca file system, thisis the default.

e i net, which means use a boot server on another machine. The flags - i d, - host s and - set cooki e
must also be specified.

If Loader issomething else, the user-supplied Loader port program is started.
- make

Makesthe Erlang runtime system invoke make: al | () inthe current working directory and then terminate; see
make(3) . Implies- noi nput .

-man Modul e
Displays the manual page for the Erlang module Modul e. Only supported on Unix.
-nmode interactive | enbedded

Indicatesif the systemisto load code dynamicaly (i nt er act i ve), orif al codeisto beloaded during system
initialization (embedded); seecode(3) . Defaultstoi nt eracti ve.

-nane Nane

Makes the Erlang runtime system into a distributed node. This flag invokes all network servers necessary for a
node to become distributed; see net _ker nel (3) . Itisalso ensured that epnd runs on the current host before
Erlang is started; seeepnd(1) .and the- st art _epnd option.

The node name will be Name @ost , where Host isthe fully qualified host name of the current host. For short
names, use flag - snamne instead.

Warning:

Starting a distributed node without also specifying - prot o_di st i net _tl| s will expose the node to
attacks that may give the attacker complete access to the node and in extension the cluster. When using un-
secure distributed nodes, make sure that the network is configured to keep potential attackers out.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 269

erl

- noi nput
Ensures that the Erlang runtime system never tries to read any input. Implies- noshel | .
-noshel |

Starts an Erlang runtime system with no shell. This flag makes it possible to have the Erlang runtime system as
acomponent in a series of Unix pipes.

-nostick

Disables the sticky directory facility of the Erlang code server; see code(3) .
- ol dshel |

Invokes the old Erlang shell from Erlang/OTP 3.3. The old shell can still be used.
-paDrlDr2...

Adds the specified directories to the beginning of the code path, similar to code: add_pat hsa/ 1. Note that
the order of the given directories will be reversed in the resulting path.

As an dternative to - pa, if several directories are to be prepended to the code path and the directories have
a common parent directory, that parent directory can be specified in environment variable ERL_LI BS; see
code(3).

-pz Dir1 Dir2 ...

Adds the specified directories to the end of the code path, similar to code: add_pat hsz/ 1; seecode(3) .
-path Dirl Dir2 ...

Replaces the path specified in the boot script; seescri pt (4) .
-proto_dist Proto

Specifies aprotocol for Erlang distribution:

inet _tcp
TCP over |Pv4 (the default)
inet tls
Distribution over TLS/SSL, See the Using SSL for Erlang Distribution User's Guide for details on how to
setup a secure distributed node.
inet6 _tcp
TCP over IPv6

For example, to start up IPv6 distributed nodes:

% erl -name test@ipv6node.example.com -proto dist inet6 tcp
-renmsh Node

Starts Erlang with aremote shell connected to Node.
-rsh Program

Specifies an alternativeto r sh for starting a slave node on aremote host; seesl ave(3) .
-run Mod [Func [Argl, Arg2, ...]] (initflag)

Makesi ni t cal the specified function. Func defaultsto st art . If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Argl, Arg2,...] as
argument. All arguments are passed as strings. See i ni t (3) .

270 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

-s Mbd [Func [Argl, Arg2, ...]] (nitflag)

Makesi ni t cal the specified function. Func defaultsto st art . If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Argl, Arg2,...] as
argument. All arguments are passed as atoms. See i ni t (3) .

- set cooki e Cooki e
Sets the magic cookie of the node to Cooki e; see er | ang: set _cooki e/ 2.
-shutdown_tine Tine

Specifies how long time (in milliseconds) the i ni t process is alowed to spend shutting down the system. If
Ti me milliseconds have elapsed, all processes till existing arekilled. Defaultstoi nfi nity.

-snane Nane

Makes the Erlang runtime system into a distributed node, similar to - nane, but the host name portion of the
node name Nane @Host will be the short name, not fully qualified.

This is sometimes the only way to run distributed Erlang if the Domain Name System (DNS) is not running. No
communication can exist between nodes running with flag - sname and those running with flag - nane, as node
names must be unique in distributed Erlang systems.

War ning:

Starting a distributed node without also specifying - prot o_di st i net tl| s will expose the node to
attacks that may give the attacker complete access to the node and in extension the cluster. When using un-
secure distributed nodes, make sure that the network is configured to keep potential attackers out.

-start_epnd true | false

Specifies whether Erlang should start epmd on startup. By default thisist r ue, but if you prefer to start epmd
manually, set thisto f al se.

This only applies if Erlang is started as a distributed node, i.e. if - name or - snamne is specified. Otherwise,
epmd isnot started even if - st art _epnd t rue isgiven.

Note that a distributed node will fail to start if epmd is not running.
-snp [enabl e| aut o| di sabl €]

-snp enabl e and - snp start the Erlang runtime system with SM P support enabled. This canfail if no runtime
system with SMP support isavailable. - snp aut o startsthe Erlang runtime system with SMP support enabled
if itisavailable and morethan onelogical processor isdetected. - snp di sabl e startsaruntime system without
SMP support. The runtime system without SMP support is deprecated and will be removed in a future major
release.

See dso flag+S.

- ver si on (emulator flag)

Makes the emulator print its version number. The sameaser| +V.

Emulator Flags

er | invokesthe code for the Erlang emulator (virtual machine), which supports the following flags:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 271

erl

+a

+A

+B

+C

+C

+d

+e

+ec

si ze

Suggested stack size, in kilowords, for threads in the async thread pool. Valid range is 16-8192 kilowords.
The default suggested stack size is 16 kilowords, that is, 64 kilobyte on 32-bit architectures. This small default
size has been chosen because the number of async threads can be large. The default size is enough for drivers
delivered with Erlang/OTP, but might not be large enough for other dynamically linked-in drivers that use the
driver_async() functionality. Notice that the value passed is only a suggestion, and it can even be ignored
on some platforms.

si ze
Setsthe number of threadsin async thread pool. Valid rangeis 0-1024. Defaultsto 10if thread support isavailable.
[c | d] i]

Option ¢ makes Ct r | - Cinterrupt the current shell instead of invoking the emulator break handler. Option d
(same as specifying +B without an extra option) disables the break handler. Optioni makes the emulator ignore
any break signal.

If option ¢ isused with ol dshel | on Unix, Ct r | - Cwill restart the shell process rather than interrupt it.

Notice that on Windows, this flag is only applicable for wer | , not er | (ol dshel |). Noticealsothat Ct r | -
Br eak isused instead of Ct r | - C on Windows.

true | false
Enables or disables time correction:

true

Enables time correction. Thisisthe default if time correction is supported on the specific platform.
fal se

Disables time correction.

For backward compatibility, the boolean value can be omitted. Thisisinterpreted as+c f al se.
no_time_warp | single_tinme_warp | nulti_tinme_warp
Sets time warp mode:

no_ti me_warp

No time warp mode (the default)
single_tinme_warp

Sngle time warp mode
multi _time_warp

Multi-time warp mode

If the emulator detects an internal error (or runs out of memory), it, by default, generates both a crash dump and
a core dump. The core dump is, however, not very useful as the content of process heaps is destroyed by the
crash dump generation.

Option +d instructs the emulator to produce only a core dump and no crash dump if aninternal error is detected.

Calling erl ang: hal t/ 1 with a string argument still produces a crash dump. On Unix systems, sending an
emulator process a S| GUSR1 signal also forces a crash dump.

Nunber
Sets the maximum number of ETS tables.

Forces option conpr essed on al ETS tables. Only intended for test and evaluation.

272 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

+f nl

The virtual machine works with filenames as if they are encoded using the 1SO Latin-1 encoding, disallowing
Unicode characters with code points > 255.

For more information about Unicode filenames, see section Unicode Filenames in the STDLIB User's Guide.
Notice that this value also applies to command-line parameters and environment variables (see section Unicode
in Environment and Parametersin the STDLIB User's Guide).

+Hnu[{wi|e}]

The virtual machine works with filenames as if they are encoded using UTF-8 (or some other system-specific
Unicode encoding). This is the default on operating systems that enforce Unicode encoding, that is, Windows
and MacOS X.

The +f nu switch can be followed by w, i , or e to control how wrongly encoded filenames are to be reported:

« wmeansthat awarning issenttotheer r or _| ogger whenever awrongly encoded filename is " skipped"
in directory listings. Thisis the default.

e i meansthat those wrongly encoded filenames are silently ignored.
e e meansthat the API function returns an error whenever a wrongly encoded filename (or directory name)
is encountered.

Noticethat fil e: read_I i nk/ 1 awaysreturnsan error if thelink pointsto an invalid filename.

For more information about Unicode filenames, see section Unicode Filenames in the STDLIB User's Guide.
Notice that this value also applies to command-line parameters and environment variables (see section Unicode
in Environment and Parametersin the STDLIB User's Guide).

+tna[{wi]e}]

Selection between +f nl and +f nu is done based on the current local e settings in the OS. This means that if you
have set your terminal for UTF-8 encoding, the filesystem is expected to use the same encoding for filenames.
Thisis default on all operating systems, except MacOS X and Windows.

The +f na switch can befollowed by w; i , or e. This has effect if the locale settings cause the behavior of +f nu
to be selected; seethe description of +f nu above. If thelocale settings cause the behavior of +f nl to be selected,
thenw, i , or e have no effect.

For more information about Unicode filenames, see section Unicode Filenames in the STDLIB User's Guide.
Notice that this value also applies to command-line parameters and environment variables (see section Unicode
in Environment and Parametersin the STDLIB User's Guide).

+hms Si ze

Sets the default heap size of processesto thesize Si ze.
+hnbs Si ze

Sets the default binary virtual heap size of processestothesize Si ze.
+hmax Si ze

Sets the default maximum heap size of processesto thesize Si ze. Defaultsto O, which means that no maximum
heap size is used. For moreinformation, see pr ocess_f | ag(max_heap_si ze, MaxHeapSi ze).

+hmaxel true|fal se

Sets whether to send an error logger message or not for processes reaching the maximum heap size. Defaults to
t r ue. For more information, see pr ocess_fl ag(nmax_heap_si ze, MaxHeapSi ze).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 273

erl

+hmaxk true|fal se

Sets whether to kill processes reaching the maximum heap size or not. Default to t r ue. For more information,
see process_fl ag(max_heap_si ze, MaxHeapSi ze).

+hpds Si ze
Setstheinitial process dictionary size of processesto thesize Si ze.
+hnmgd of f _heap| on_heap

Setsthe default valuefor processflag mnessage_queue_dat a. Defaultstoon_heap. If +hngd isnot passed,
on_heap will bethe default. For moreinformation, see pr ocess_fl ag(nessage_queue_data, MXD).

+K true | false

Enables or disables the kernel poll functionality if supported by the emulator. Defaultsto f al se (disabled). If
the emulator does not support kernel poll, and flag +K is passed to the emulator, awarning isissued at startup.

+l
Enables autol oad tracing, displaying information while loading code.
+L

Preventsloading information about source filenames and line numbers. This saves some memory, but exceptions
do not contain information about the filenames and line numbers.

+MFl ag Val ue
Memory allocator-specific flags. For moreinformation, seeerts_al | oc(3).
+pc Range
Sets the range of characters that the system considers printable in heuristic detection of strings. This typically
affects the shell, debugger, and i o: f or mat functions (when ~t p isused in the format string).
Two values are supported for Range:

latinl
The default. Only charactersin the 1SO Latin-1 range can be considered printable. This meansthat a
character with a code point > 255 is never considered printable and that lists containing such characters
are displayed as lists of integers rather than text strings by tools.

uni code
All printable Unicode characters are considered when determining if alist of integersisto be displayed
in string syntax. This can give unexpected resultsif, for example, your font does not cover all Unicode
characters.

Seealso i 0: printabl e_range/ 0inSTDLIB.
+P Nunber

Sets the maximum number of simultaneously existing processes for this system if aNumnber is passed as value.
Valid range for Nunber is[1024-134217727]

NOTE: The actual maximum chosen may be much larger thanthe Nunber passed. Currently the runtime system
often, but not always, chooses avalue that is a power of 2. This might, however, be changed in the future. The
actual value chosen can be checked by calling erlang: system info(process _limit).

The default valueis 262144
+Q Nunber

Sets the maximum number of simultaneously existing ports for this system if aNumber is passed asvalue. Vaid
range for Nunber is[1024- 134217727]

274 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

NOTE: The actual maximum chosen may be much larger than the actual Nunber passed. Currently the runtime
system often, but not always, chooses avalue that isapower of 2. This might, however, be changed in the future.
The actual value chosen can be checked by calling erlang: system info(port_limit).

Thedefault value usedisnormally 65536. However, if the runtime system is able to determine maximum amount
of file descriptorsthat it is allowed to open and this value is larger than 65536, the chosen value will increased
to avalue larger or equal to the maximum amount of file descriptors that can be opened.

OnWindowsthe default valueisset to 8196 becausethe normal OS limitationsare set higher than most machines
can handle.

+R Rel easeNunber
Sets the compatibility mode.

The distribution mechanism is not backward compatible by default. This flag sets the emulator in compatibility
mode with an earlier Erlang/OTP release Rel easeNunber . The release number must be in the range
<current release>-2..<current release>. Thislimitsthe emulator, making it possible for it to
communicate with Erlang nodes (as well as C- and Java hodes) running that earlier release.

Ensure that all nodes (Erlang-, C-, and Java nodes) of a distributed Erlang system is of the same Erlang/OTP
release, or from two different Erlang/OTP releases X and Y, where all Y nodes have compatibility mode X.

+r
Forces ETS memory block to be moved on realloc.
+rg Reader GroupsLinit

Limits the number of reader groups used by read/write locks optimized for read operations in the Erlang runtime
system. By default the reader groups limit is 64.

When the number of schedulersislessthan or equal to the reader groups limit, each scheduler hasits own reader
group. When the number of schedulers is larger than the reader groups limit, schedulers share reader groups.
Shared reader groups degrade read lock and read unlock performance while many reader groups degrade write
lock performance. So, the limit is a tradeoff between performance for read operations and performance for write
operations. Each reader group consumes 64 byte in each read/write lock.

Notice that a runtime system using shared reader groups benefits from binding schedulers to logical processors,
as the reader groups are distributed better between schedulers.

+S Schedul ers: Schedul er Onl i ne

Sets the number of scheduler threads to create and scheduler threads to set online when SMP support has
been enabled. The maximum for both values is 1024. If the Erlang runtime system is able to determine the
number of logical processors configured and logical processors available, Schedul er s defaults to logical
processors configured, and Schedul er sOnl i ne defaultsto logical processors available; otherwise the default
values are 1. Schedul er s can be omitted if : Schedul er Onl i ne is not and conversely. The number of
schedulers online can be changed at runtime through er | ang: system fl ag(schedul ers_onl i ne,

Schedul ersOnl i ne).

If Schedul er s or Schedul er sOnl i ne is specified as a negative number, the value is subtracted from the
default number of logical processors configured or logical processors available, respectively.

Specifying value O for Schedul ers or Schedul er sOnl i ne resets the number of scheduler threads or
scheduler threads online, respectively, to its default value.

Thisoption isignored if the emulator does not have SMP support enabled (see flag - snp).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 275

erl

+SP Schedul er sPer cent age: Schedul er sOnl i nePer cent age

Similar to +S but uses percentages to set the number of scheduler threads to create, based on logical
processors configured, and scheduler threads to set online, based on logical processors available, when
SMP support has been enabled. Specified values must be > 0. For example, +SP 50: 25 sets the
number of scheduler threads to 50% of the logical processors configured, and the number of scheduler
threads online to 25% of the logical processors available. Schedul er sPer cent age can be omitted if
: Schedul er sOnl i nePer cent age isnot and conversely. The number of schedulers online can be changed
at runtime through er | ang: system fl ag(schedul ers_onl i ne, Schedul ersOnline).

This option interacts with +S settings. For example, on a system with 8 logical cores configured and 8 logical
cores available, the combination of the options +S 4: 4 +SP 50: 25 (in either order) results in 2 scheduler
threads (50% of 4) and 1 scheduler thread online (25% of 4).

Thisoption isignored if the emulator does not have SMP support enabled (see flag - snp).

+SDcpu Di rtyCPUSchedul ers: Di rt yCPUSchedul er sOnl i ne

Sets the number of dirty CPU scheduler threads to create and dirty CPU scheduler threads to set online when
threading support has been enabled. The maximum for both values is 1024, and each value is further limited by
the settings for normal schedulers:

e Thenumber of dirty CPU scheduler threads created cannot exceed the number of normal scheduler threads
created.

e The number of dirty CPU scheduler threads online cannot exceed the number of normal scheduler threads
online.

For details, see the +S and +SP. By default, the number of dirty CPU scheduler threads created
equals the number of normal scheduler threads created, and the number of dirty CPU scheduler threads
online equals the number of normal scheduler threads online. Di rt yCPUSchedul er s can be omitted
if : Di rtyCPUSchedul ersOnli ne is not and conversely. The number of dirty CPU schedulers online
can be changed at runtime through erlang: system flag(dirty cpu_schedul ers_onli ne,
Di rt yCPUSchedul ersOnli ne).

The amount of dirty CPU schedulersislimited by the amount of normal schedulersin order to limit the effect on
processes executing on ordinary schedulers. If the amount of dirty CPU schedulers was allowed to be unlimited,
dirty CPU bound jobs would potentially starve normal jobs.

Thisoption isignored if the emulator does not have threading support enabled.

+SDPcpu Di rt yCPUSchedul er sPer cent age: Di rt yCPUSchedul er sOnl i nePer cent age

Similar to +SDcpu but uses percentages to set the number of dirty CPU scheduler threads to create
and the number of dirty CPU scheduler threads to set online when threading support has been enabled.
Specified values must be > 0. For example, +SDPcpu 50: 25 sets the number of dirty CPU scheduler
threads to 50% of the logical processors configured and the number of dirty CPU scheduler threads
online to 25% of the logical processors available. Di rt yCPUSchedul er sPer cent age can be omitted if
: Di rt yCPUSchedul er sOnl i nePer cent age isnot and conversely. The number of dirty CPU schedulers
onlinecan be changed at runtimethrough er | ang: system fl ag(dirty _cpu_schedul ers_onl i ne,
Di rt yCPUSchedul er sOnl i ne).

This option interacts with +SDcpu settings. For example, on a system with 8 logical cores configured and 8
logical coresavailable, the combination of theoptions+SDcpu 4: 4 +SDPcpu 50: 25 (in either order) results
in 2 dirty CPU scheduler threads (50% of 4) and 1 dirty CPU scheduler thread online (25% of 4).

Thisoption isignored if the emulator does not have threading support enabled.

276 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

+SDi o Di rtyl CSchedul ers

Sets the number of dirty I/O scheduler threads to create when threading support has been enabled. Valid range
is 0-1024. By default, the number of dirty 1/0 scheduler threads created is 10, same as the default number of
threads in the async thread pool.

The amount of dirty 10 schedulers is not limited by the amount of normal schedulers like the amount of dirty
CPU schedulers. Thissince only 1/0 bound work is expected to execute on dirty 1/0O schedulers. If the user should
schedule CPU bound jobs on dirty 1/0 schedulers, these jobs might starve ordinary jobs executing on ordinary
schedulers.

Thisoption isignored if the emulator does not have threading support enabled.
+sFl ag Val ue
Scheduling specific flags.
+sbt Bi ndType
Sets scheduler bind type.

Schedulers can also be bound using flag +st bt . The only difference between these two flags is how the
following errors are handled:

« Binding of schedulersis not supported on the specific platform.

* Noavailable CPU topology. That is, the runtime system was not able to detect the CPU topology
automatically, and no user-defined CPU topology was set.

If any of these errors occur when +sbt has been passed, the runtime system prints an error message, and
refusesto start. If any of these errorsoccur when +st bt hasbeen passed, the runtime system silently ignores
the error, and start up using unbound schedulers.

Vadid Bi ndTypes:

u
unbound - Schedulers are not bound to logical processors, that is, the operating system decides
where the scheduler threads execute, and when to migrate them. Thisis the default.

ns
no_spr ead - Schedulers with close scheduler identifiers are bound as close as possible in
hardware.

ts
t hr ead_spr ead - Thread refers to hardware threads (such as Intel's hyper-threads). Schedulers
with low scheduler identifiers, are bound to the first hardware thread of each core, then schedulers
with higher scheduler identifiers are bound to the second hardware thread of each core,and so on.

ps
processor _spread - Schedulers are spread liket hr ead_spr ead, but also over physical
processor chips.

s
spr ead - Schedulers are spread as much as possible.

nnt s
no_node_t hread_spread -Liket hread_spr ead, but if multiple Non-Uniform Memory
Access (NUMA) nodes exist, schedulers are spread over one NUMA node at atime, that is, all
logical processors of one NUMA node are bound to schedulersin sequence.

nnps
no_node_processor_spread - Likeprocessor _spr ead, but if multiple NUMA nodes
exist, schedulers are spread over one NUMA node at atime, that is, all logical processors of one
NUMA node are bound to schedulersin sequence.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 277

erl

t nnps
t hread_no_node_processor_spread - A combination of t hr ead_spr ead, and
no_node_processor _spr ead. Schedulers are spread over hardware threads across NUMA
nodes, but schedulers are only spread over processors internally in one NUMA node at atime.

def aul t _bi nd - Binds schedulers the default way. Defaults to
t hread_no_node_processor _spread (which can changein the future).

Binding of schedulersis only supported on newer Linux, Solaris, FreeBSD, and Windows systems.

If no CPU topology is available when flag +sbt is processed and Bi ndType isany other type than u, the
runtime system failsto start. CPU topology can be defined using flag +sct . Noticethat flag +sct can have
to be passed before flag +sbt on the command line (if no CPU topology has been automatically detected).

The runtime system does by default not bind schedulersto logical processors.

If the Erlang runtime system isthe only operating system process that binds threadsto logical processors,
this improves the performance of the runtime system. However, if other operating system processes
(for example another Erlang runtime system) also bind threads to logical processors, there can be a
performance penalty instead. This performance penalty can sometimes be severe. If so, you are advised
not to bind the schedulers.

How schedulers are bound matters. For example, in situations when there are fewer running processes than
schedulers online, the runtime system triesto migrate processes to schedulerswith low scheduler identifiers.
The morethe schedulers are spread over the hardware, the more resources are available to the runtime system
in such situations.

Note:

If a scheduler fails to bind, this is often silently ignored, as it is not aways possible
to verify valid logical processor identifiers. If an error is reported, it is reported to the
error_l ogger. If you want to verify that the schedulers have bound as requested, call
erl ang: system i nf o(schedul er _bi ndi ngs) .

+sbwt none|very_short| short| medi unj | ong| very | ong

Sets scheduler busy wait threshold. Defaultsto medi um The threshold determines how long schedulers are
to busy wait when running out of work before going to sleep.

This flag can be removed or changed at any time without prior notice.

+scl true|fal se

Enables or disables scheduler compaction of oad. By default scheduler compaction of load isenabled. When
enabled, load balancing strivesfor aload distribution, which causes as many scheduler threads as possible to
befully loaded (that is, not run out of work). Thisis accomplished by migrating load (for example, runnable
processes) into a smaller set of schedulers when schedulers frequently run out of work. When disabled, the
frequency with which schedulers run out of work is not taken into account by the load balancing logic.

+scl fal seissimilarto+sub true, but +sub true aso baances scheduler utilization between
schedulers.

278 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

+sct CpuTopol ogy

e <Id> = integer(); when 0 =< <l d> =< 65535

e <ldRange> = <ld>-<ld>

e <ldOrldRange> = <l d> | <l dRange>

e <ldList> = <1dO | dRange>, <I dOr 1 dRange> | <IdOrl dRange>

* <Logical lds> = L<ldList>

* <Threadlds> = T<ldList> | t<ldList>

e <Corelds> = C<ldList> | c<ldList>

e <Processorlds> = P<ldList> | p<ldList>

* <Nodelds> = N<ldList> | n<ldList>

» <l dDefs> = <Logi cal | ds><Thr eadl ds><Cor el ds><Pr ocessor | ds><Nodel ds>
<Logi cal | ds><Thr eadl ds><Cor el ds><Nodel ds><Pr ocessor | ds>

* CpuTopol ogy = <IdDefs>: <l dDefs> | <IdDefs>

Sets a user-defined CPU topology. The user-defined CPU topology overrides any automatically detected
CPU topology. The CPU topology is used when binding schedulersto logical processors.

Uppercase letters signify real identifiers and lowercase letters signify fake identifiers only used for
description of the topology. Identifiers passed as real identifiers can be used by the runtime system when
trying to access specific hardware; if they are incorrect the behavior is undefined. Faked logical CPU
identifiers are not accepted, as there is no point in defining the CPU topology without real logica CPU
identifiers. Thread, core, processor, and node identifiers can be omitted. If omitted, the thread ID defaults
tot 0, the core ID defaultsto c0, the processor ID defaultsto p0, and the node ID is left undefined. Either
each logical processor must belong to only one NUMA node, or no logical processors must belong to any
NUMA nodes.

Both increasing and decreasing <I dRange>s are allowed.

NUMA node identifiers are system wide. That is, each NUMA node on the system must have a unique
identifier. Processor identifiers are also system wide. Core identifiers are processor wide. Thread identifiers
are core wide.

The order of the identifier typesimplies the hierarchy of the CPU topology. The valid orders are asfollows:

e <Logical | ds><Thr eadl ds><Cor el ds><Pr ocessor | ds><Nodel ds>, that is, thread is
part of acorethat is part of a processor, which is part of aNUMA node.

* <Logi cal | ds><Thr eadl ds><Cor el ds><Nodel ds><Pr ocessor | ds>, that is, thread is
part of acorethat is part of aNUMA node, which is part of a processor.

A CPU topology can consist of both processor external, and processor internal NUMA nodes aslong as each
logical processor belongs to only one NUMA node. If <Pr ocessor | ds> is omitted, its default position
isbefore <Nodel ds>. That is, the default is processor external NUMA nodes.

If alist of identifiersisused in an <| dDef s>:

e <Logi cal | ds> must bealist of identifiers.
* Atleast one other identifier type besides<Logi cal | ds> must also have alist of identifiers.
» All lists of identifiers must produce the same number of identifiers.

A simple example. A single quad core processor can be described as follows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 279

erl

% erl +sct LO-3c0-3

1> erlang:system info(cpu_topology).

[{processor, [{core,{logical,0}},
{core,{logical,1}},
{core,{logical,2}},
{core,{logical,3}}1}]

A more complicated example with two quad core processors, each processor in its own NUMA node. The
ordering of logical processorsisabit weird. Thisto give a better example of identifier lists:

% erl +sct LO-1,3-2c0-3pONO:L7,4,6-5c0-3p1N1

1> erlang:system info(cpu topology).

[{node, [{processor, [{core,{logical,0}},
{core, {logical,1}},
{core, {logical,3}},
{core, {logical,2}}1}1},

{node, [{processor, [{core,{logical,7}},

{core, {logical,h4}},
{core, {logical,6}},
{core, {logical,5}}1}1}1

Aslong asreal identifiers are correct, it is OK to pass a CPU topology that isnot a correct description of the
CPU topology. When used with care this can be very useful. Thisto trick the emulator to bind its schedulers
as you want. For example, if you want to run multiple Erlang runtime systems on the same machine, you
want to reduce the number of schedulers used and manipul ate the CPU topology so that they bind to different
logical CPUs. An example, with two Erlang runtime systems on a quad core machine:

% erl +sct LO-3cO0-3 +sbt db +53:2 -detached -noinput -noshell -sname one
% erl +sct L3-0c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname two

In this example, each runtime system have two schedulers each online, and all schedulers online will run on
different cores. If we change to one scheduler online on one runtime system, and three schedulers online on
the other, all schedulers online will till run on different cores.

Notice that a faked CPU topology that does not reflect how the real CPU topology looks like is likely to
decrease the performance of the runtime system.

For more information, see er | ang: syst em i nf o(cpu_t opol ogy) .

+seci o true|fal se

Enables or disables eager check /O scheduling. Defaultsto t r ue. The default was changed from f al se
as from ERTS 7.0. The behavior before this flag was introduced correspondsto +seci o f al se.

The flag effects when schedulers will check for 1/O operations possible to execute, and when such 1/0
operations will execute. As the parameter name implies, schedulers are more eager to check for 1/0 when
t rue is passed. This, however, also implies that execution of outstanding 1/O operation is not prioritized
to the same extent aswhen f al se is passed.

erl ang: system i nf o(eager _check_i 0) returns the value of this parameter used when starting
the virtual machine.

+sfwi | nterval

Sets scheduler-forced wakeup interval. All run queues are scanned each | nt er val milliseconds. While
there are sleeping schedulers in the system, one scheduler is woken for each non-empty run queue found.
I nt erval default to O, meaning thisfeature is disabled.

280 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

This feature has been introduced as atemporary workaround for long-executing native code, and native
code that does not bump reductions properly in OTP. When these bugs have be fixed, this flag will be
removed.

+spp Bool

Sets default scheduler hint for port parallelism. If set to t r ue, the virtual machine schedules port tasks
when it improves parallelism in the system. If set to f al se, the virtual machine tries to perform port tasks
immediately, improving latency at the expense of parallelism. Default to f al se. The default used can be
inspected in runtime by calling er | ang: system i nfo(port _parallelism. The default can be
overridden on port creation by passing option par al | el i smto er| ang: open_port/2

+sss size

Suggested stack size, in kilowords, for scheduler threads. Valid range is 20-8192 kilowords. The default
suggested stack sizeis 128 kilowords.

+sssdcpu si ze

Suggested stack size, in kilowords, for dirty CPU scheduler threads. Valid range is 20-8192 kilowords. The
default suggested stack size is 40 kilowords.

+sssdi o size

Suggested stack size, in kilowords, for dirty 10 scheduler threads. Valid range is 20-8192 kilowords. The
default suggested stack size is 40 kilowords.

+st bt Bi ndType

Triesto set the scheduler bind type. The same asflag +sbt except how some errors are handled. For more
information, see +sbt .

+sub true|fal se

Enables or disables scheduler utilization balancing of load. By default scheduler utilization balancing is
disabled and instead scheduler compaction of oad isenabled, which strivesfor aload distribution that causes
as many scheduler threads as possible to be fully loaded (that is, not run out of work). When scheduler
utilization balancing is enabled, the system instead tries to balance schedul er utilization between schedulers.
That is, strive for equal scheduler utilization on all schedulers.

+sub true is only supported on systems where the runtime system detects and uses a monotonically
increasing high-resolution clock. On other systems, the runtime system fails to start.

+sub true implies +scl fal se. The difference between +sub true and +scl fal se isthat
+scl fal se doesnot try to balance the scheduler utilization.

+swct very_eager | eager | nedi unj | azy| very_ | azy

Sets scheduler wake cleanup threshold. Defaults to medi um Controls how eager schedulers are to be
requesting wakeup because of certain cleanup operations. When a lazy setting is used, more outstanding
cleanup operations can be left undone while a scheduler isidling. When an eager setting is used, schedulers
are more frequently woken, potentially increasing CPU-utilization.

This flag can be removed or changed at any time without prior notice.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 281

erl

+sws defaul t| 1 egacy
Sets scheduler wakeup strategy. Default strategy changed in ERTS 5.10 (Erlang/OTP R16A). This strategy

was known as pr oposal in Erlang/OTP R15. Thel egacy strategy was used as default from R13 up to
and including R15.

This flag can be removed or changed at any time without prior notice. |

+swt very | ow | ow nmedi unj hi gh| very_hi gh

Sets scheduler wakeup threshold. Defaultsto medi um The threshold determines when to wake up sleeping
schedulers when more work than can be handled by currently awake schedulers exists. A low threshold
causes earlier wakeups, and a high threshold causes later wakeups. Early wakeups distribute work over
multiple schedulers faster, but work does more easily bounce between schedulers.

This flag can be removed or changed at any time without prior notice. |

+t size

Sets the maximum number of atoms the virtual machine can handle. Defaults to 1,048,576.
+T Level

Enables modified timing and sets the modified timing level. Vaid range is 0-9. The timing of the runtime system

ischanged. A high level usually means agreater change than alow level. Changing the timing can be very useful
for finding timing-related bugs.

Modified timing affects the following:
Process spawning

A process calling spawn, spawn_| i nk, spawn_noni t or, or spawn_opt isscheduled out

immediately after completing the call. When higher modified timing levels are used, the caller also sleeps
for awhile after it is scheduled out.
Context reductions

The number of reductions a process is allowed to use beforeiit is scheduled out isincreased or reduced.
Input reductions

The number of reductions performed before checking 1/O is increased or reduced.

Performance suffers when modified timing is enabled. Thisflagis only intended for testing and debugging.
return_toandreturn_fromtrace messages are lost when tracing on the spawn BIFs.
This flag can be removed or changed at any time without prior notice.

+v
Verbose.
+V

Makes the emulator print its version number.

282 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

tWw | i | e

Sets the mapping of warning messages for er r or _| ogger . Messages sent to the error logger using one of
the warning routines can be mapped to errors (+W e), warnings (+W w), or information reports (+W i).
Defaults to warnings. The current mapping can be retrieved using er r or _| ogger : war ni ng_map/ 0. For
moreinformation, see err or _| ogger : war ni ng_map/ 0 in Kernel.

+zFl ag Val ue
Miscellaneous flags:
+zdbbl size

Setsthedistribution buffer busy limit (di st _buf _busy_|i m t)inkilobytes. Validrangeis1-2097151.
Defaultsto 1024.

A larger buffer limit allows processes to buffer more outgoing messages over the distribution. When the
buffer limit has been reached, sending processes will be suspended until the buffer size has shrunk. The
buffer limit is per distribution channel. A higher limit gives lower latency and higher throughput at the
expense of higher memory use.

+zdntgc tine

Sets the delayed node table garbage collection time (del ayed_node_t abl e_gc) in seconds. Valid
values are either i nf i ni t'y or an integer in the range 0-100000000. Defaults to 60.

Node table entries that are not referred linger in the table for at least the amount of time that this parameter
determines. The lingering prevents repeated deletions and insertions in the tables from occurring.

Environment Variables
ERL_CRASH_DUMP

If the emulator needs to write a crash dump, the value of this variable is the filename of the crash dump file. If
the variable is not set, the name of the crash dump fileiser | _cr ash. dunp inthe current directory.

ERL_CRASH_DUWP_NI CE

Unix systems: If the emulator needs to write a crash dump, it uses the value of this variable to set the nice value
for the process, thus lowering its priority. Valid range is 1-39 (higher values are replaced with 39). The highest
value, 39, gives the process the lowest priority.

ERL_CRASH_DUMP_SECONDS

Unix systems: This variable gives the number of seconds that the emulator is allowed to spend writing a crash
dump. When the given number of seconds have elapsed, the emulator is terminated.

ERL_CRASH DUMP_SECONDS=0
If the variable is set to 0 seconds, the runtime system does not even attempt to write the crash
dump file. It only terminates. Thisisthe default if option - hear t ispassedtoer| and
ERL_CRASH_ DUMP_SECONDS is not set.

ERL_CRASH DUMP_SECONDS=S
If the variable is set to a positive value S, wait for S seconds to complete the crash dump file and then
terminates the runtime system with a SI GALRMsignal.

ERL_CRASH DUMP_SECONDS=- 1
A negative value causes the termination of the runtime system to wait indefinitely until the crash
dump file has been completly written. Thisis the default if option - hear t isnot passedtoer| and
ERL_CRASH_ DUMP_SECONDS is not set.

Seealsoheart (3).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 283

erl

ERL_CRASH DUMP_BYTES

This variable sets the maximum size of acrash dump file in bytes. The crash dump will be truncated if this limit
is exceeded. If the variable is not set, no size limit is enforced by default. If the variable is set to 0, the runtime
system does not even attempt to write a crash dump file.

Introduced in ERTS 8.1.2 (Erlang/OTP 19.2).
ERL_AFLAGS
The content of this variable is added to the beginning of the command linefor er | .

Flag- ext r aistreated in aspecial way. Itsscope ends at the end of the environment variable content. Arguments
following an - ext r a flag are moved on the command lineinto section - ext r a, that is, the end of the command
linefollowing an - ext r a flag.

ERL ZFLAGS and ERL_FLAGS
The content of these variables are added to the end of the command linefor er | .

Flag - ext r aistreated in aspecial way. Itsscope ends at the end of the environment variable content. Arguments
following an - ext r a flag are moved on the command lineinto section - ext r a, that is, the end of the command
linefollowing an - ext r a flag.

ERL_LI BS

Containsalist of additional library directoriesthat the code server searches for applications and adds to the code
path; seecode(3) .

ERL_EPMD_ADDRESS

Can be set to acomma-separated list of 1P addresses, in which casethe epnd daemon listens only on the specified
address(es) and on the loopback address (which isimplicitly added to thelist if it has not been specified).

ERL_EPMD_PORT

Can contain the port number to use when communicating with eprd. The default port works fine in most cases.
A different port can be specified to allow nodes of independent clusters to co-exist on the same host. All nodes
in acluster must use the same epd port number.

Signals
On Unix systems, the Erlang runtime will interpret two types of signals.
S| GUSR1
A Sl GUSR1 signal forces a crash dump.
S| GTERM

A SI GTERMwill produce ast op messagetothei ni t process. Thisisequivalenttoai nit: st op/ 0 cal.
Introduced in ERTS 8.3 (Erlang/OTP 19.3)
Thesigna SI GUSR2 isreserved for internal usage. No other signals are handled.

Configuration
The standard Erlang/OTP system can be reconfigured to change the default behavior on startup.
The. er | ang startup file

When Erlang/OTP is started, the system searchesfor afile named . er | ang in the directory where Erlang/OTP
is started. If not found, the user's home directory is searched for an . er | ang file.

284 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

If an. er | ang fileisfound, it is assumed to contain valid Erlang expressions. These expressions are evaluated
asif they were input to the shell.

A typical . er | ang file contains a set of search paths, for example:

io:format("executing user profile in HOME/.erlang\n",[]).
code:add_path("/home/calvin/test/ebin").

code:add path("/home/hobbes/bigappl-1.2/ebin").
io:format(".erlang rc finished\n",[]).

user_default and shell _default

Functionsin the shell that are not prefixed by a module name are assumed to be functional objects (funs), built-
in functions (BIFs), or belong to themoduleuser _def aul t orshel | _def aul t.

To include private shell commands, definetheminamoduleuser _def aul t and add the following argument
asthefirstlineinthe. er | ang file:

code:load abs("..../user default").
erl
If the contents of . er | ang are changed and a private version of user _def aul t is defined, the Erlang/OTP
environment can be customized. More powerful changes can be made by supplying command-line argumentsin
the startup script er | . For moreinformation, seei ni t (3) .
See Also

epnd(1),erl _primloader(3),erts_alloc(3),init(3),application(3),auth(3),code(3),
erl _boot server(3),heart(3),net_kernel (3),make(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 285

erlc

erlc

Command

Theer | ¢ program provides a common way to run al compilersin the Erlang system. Depending on the extension
of each input file, er | ¢ invokes the appropriate compiler. Regardless of which compiler is used, the same flags are
used to provide parameters, such as include paths and output directory.

The current working directory, " . ", isnot included in the code path when running the compiler. Thisto avoid loading
Beam files from the current working directory that could potentialy be in conflict with the compiler or the Erlang/
OTP system used by the compiler.

Exports

erlc flags filel.ext file2.ext...

Compiles one or morefiles. The files must include the extension, for example, . er | for Erlang sourcecode, or . yr |
for Yecc source code. Er | ¢ uses the extension to invoke the correct compiler.

Generally Useful Flags
The following flags are supported:
-1 <Directory>

Instructs the compiler to search for include filesin the Di r ect or y. When encountering an - i ncl ude or -
i ncl ude_Ii b directive, the compiler searches for header filesin the following directories:

. . ", the current working directory of the file server

¢ The base name of the compiled file

e Thedirectories specified using option - | ; the directory specified last is searched first
-0 <Directory>

The directory where the compiler is to place the output files. Defaults to the current working directory.
- D<Name>

Defines a macro.
- D<Nane>=<Val ue>

Definesamacro with the specified value. The value can be any Erlang term. Depending on the platform, the value
may need to be quoted if the shell itself interprets certain characters. On Unix, terms containing tuples and lists
must be quoted. Terms containing spaces must be quoted on all platforms.

-\W&Error >

Makes all warningsinto errors.
- WeNumber >

Setswarning level to Nunber . Defaultsto 1. To turn off warnings, use - W.
-W

Same as- W.. Defaullt.

Enables verbose output.

286 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlc

-b <Qut put _type>

Specifies the type of output file. Qut put _t ype isthe same as the file extension of the output file, but without
the period. This option isignored by compilers that have a single output format.

- Ser
Compiles using the SMP emulator. This is mainly useful for compiling native code, which must be compiled
with the same runtime system that it is to be run on.

-M

Produces a Makefile rule to track header dependencies. Theruleissent to st dout . No object fileis produced.
- MF <Makefil e>

Asoption - M except that the Makefileiswritten to Makef i | e. No object fileis produced.
-MD

Sameas- M - MF <Fi | e>. Pheam

-MI' <Tar get >
In conjunction with option - Mor - MF, changes the name of the rule emitted to Tar get .
- MQ <Tar get >
Asoption - MT, except that characters special to make/ 1 are quoted.
- WP
In conjunction with option - Mor - M-, adds a phony target for each dependency.
- MG
In conjunction with option - Mor - MF, considers missing headers as generated files and adds them to the
dependencies.

Signals that no more options will follow. The rest of the arguments is treated as filenames, even if they start
with hyphens.

+<Ter n»>

A flag starting with a plus (+) rather than a hyphen is converted to an Erlang term and passed unchanged to the
compiler. For example, option export _al | for the Erlang compiler can be specified as follows:

erlc +export all file.erl

Depending on the platform, the value may need to be quoted if the shell itself interprets certain characters. On
Unix, terms containing tuples and lists must be quoted. Terms containing spaces must be quoted on al platforms.

Special Flags
The following flags are useful in special situations, such as rebuilding the OTP system:
-pa <Directory>

Appends Di r ect or y to the front of the code path in the invoked Erlang emulator. This can be used to invoke
another compiler than the default one.

-pz <Directory>
AppendsDi r ect or y to the code path in the invoked Erlang emulator.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 287

erlc

Supported Compilers
The following compilers are supported:
.erl
Erlang source code. It generatesa . beamfile.

Options- P, - E, and - Sareequivaentto+' P' ,+' E' ,and+' S' , except that it is not necessary to include the
single quotes to protect them from the shell.

Supported options: -1 ,-0,-D,-v,-W-b.

Erlang assembler source code. It generatesa. beamfile.
Supported options. sameasfor . er| .

.core
Erlang core source code. It generates a. beamfile.
Supported options: sameasfor . er| .

Lyrl
Y ecc source code. It generatesan . er | file.
Use option - | with the name of afile to use that file as a customized prologue file (optioni ncl udefi | e).
Supported options. - 0, - v, -1 ,-W

.mb
MIB for SNMP. It generatesa. bi n file.
Supported options. - | , -0, - W

.bin
A compiled MIB for SNMP. It generatesa. hrl file.
Supported options: - 0, - V.

.rel
Script file. It generates a boot file.

Use option - | to name directories to be searched for application files (equivalent to the pat h in the option list
for syst ool s: make_script/ 2).

Supported option: - 0.
.asnl

ASN1file. It createsan . erl,. hrl,and. asnldb filefroman. asnl file. Also compilesthe. er| using
the Erlang compiler unless option +noobj is specified.

Supported options: - 1 ,-0,-b,-W
Lidl

ICfile. It runsthe IDL compiler.

Supported options: - | , - 0.

288 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlc

Environment Variables

ERLC EMJULATOR
The command for starting the emulator. Defaultsto er | in the same directory astheer | ¢ programitself, or,

if it doesnot exist, er | inany of the directories specified in environment variable PATH.

See Also
erl (1),conpile(3),yecc(3),snnp(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 289

werl

werl

Command

On Windows, the preferred way to start the Erlang system for interactive use is as follows:
wer| <argunent s>

This starts Erlang in its own window, with fully functioning command-line editing and scrollbars. All flags except -

ol dshel I work asthey doforerl (1).

e Tocopy text to the clipboard, useCt r | - C.

e Topastetext,useCtrl - V.

e Tointerrupt the runtime system or the shell process (depending on what has been specified with system flag +B),
useCtrl - Break.

In cases where you want to redirect standard input and/or standard output or use Erlang in a pipeline, wer | is not
suitable, and the er | program isto be used instead.

The wer | window is in many ways modeled after the xt er mwindow present on other platforms, as the xt er m
model fits well with line-oriented command-based interaction. This means that selecting text is line-oriented rather
than rectangle-oriented.

* Tosdecttextinthewer | window, pressand hold theleft mouse button and drag the mouse over thetext you want
to select. If the selection crosses line boundaries, the selected text consists of complete lines where applicable
(just like in aword processor).

» To select more text than fits in the window, start by selecting a small part in the beginning of the text you want,
then use the scrollbar to view the end of the desired selection, point to it, and press the right mouse button. The
whole area between your first selection and the point where you right-clicked isincluded in the selection.

» Tocopy theselected text totheclipboard, either use Ct r | - C, usethe menu, or pressthe copy button inthetool bar.
Pasted text isinserted at the current prompt position and is interpreted by Erlang as usual keyboard input.
e Toretrieve previous command lines, presstheUp arroworuseCtrl - P.

A drop-down box in the toolbar contains the command history. Selecting acommand in the drop-down box insertsthe
command at the prompt, as if you used the keyboard to retrieve the command.

* To stop the Erlang emulator, closethewer | window.

290 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

escript

Command

escri pt provides support for running short Erlang programs without having to compile them first, and an easy way
to retrieve the command-line arguments.

Itispossibleto bundleescr i pt (s) with an Erlang runtime system to make it self-sufficient and relocatable. In such
a standalone system, the escr i pt (s) should be located in the top bi n directory of the standalone system and given
. escri pt asfile extension. Further the (built-in) escri pt program should be copied to the same directory and
given thescriptsoriginal name (without the. escri pt extension). Thiswill enable use of the bundled Erlang runtime
system.

The (built-in) escri pt program first determines which Erlang runtime system to use and then starts it to execute
your script. Usually the runtime system islocated in the same Erlang installation astheescr i pt program itself. But
for standalone systems with one or more escripts it may be the case that theescr i pt program in your path actually
starts the runtime system bundled with the escript. This is intentional, and typically happens when the standalone
system bi n directory is not in the execution path (as it may causeitser | program to override the desired one) and
theescri pt (s) arereferred to viasymbolic links from abi n directory in the path.

Exports

script-name script-argl script-arg2...

escript escript-flags script-name script-argl script-arg2...
escri pt runsascript written in Erlang.

Example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 291

escript

$ chmod u+x factorial
$ cat factorial
#!/usr/bin/env escript
%% -*- erlang -*-
%%! -smp enable -sname factorial -mnesia debug verbose
main([String]) ->
try
N = list to integer(String),
F = fac(N),
io:format("factorial ~w = ~w\n", [N,F])
catch

->
usage()

end;
main(_) ->
usage().

usage() ->
io:format("usage: factorial integer\n"),
halt(1).

fac(0) -> 1;

fac(N) -> N * fac(N-1).
$./factorial 5
factorial 5 = 120

$./factorial

usage: factorial integer
$./factorial five
usage: factorial integer

The header of the Erlang script in the example differs from anormal Erlang module. The first line is intended to be
the interpreter line, which invokesescri pt .

However, if you invoke theescri pt asfollows, the contents of the first line does not matter, but it cannot contain
Erlang code asit will be ignored:

$ escript factorial 5

The second line in the example contains an optional directive to the Enacs editor, which causesit to enter the major
mode for editing Erlang source files. If the directive is present, it must be located on the second line.

If acomment selecting the encoding exists, it can be located on the second line.

The encoding specified by the above mentioned comment applies to the script itself. The encoding of the 1/0O-
server, however, must be set explicitly asfollows:

io:setopts([{encoding, unicode}])

The default encoding of the I/O-server for st andard_i o is| ati nl, as the script runs in a non-interactive
terminal (see section Summary of Options) in the STDLIB User's Guide.

On the third line (or second line depending on the presence of the Emacs directive), arguments can be specified to
the emulator, for example:

%%! -smp enable -sname factorial -mnesia debug verbose

292 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

Such an argument line must start with %84 and the remaining line isinterpreted as arguments to the emulator.

If you know thelocation of theescr i pt executable, thefirst linecandirectly givethepathtoescr i pt , for example:

#!/usr/local/bin/escript

As any other type of scripts, Erlang scripts do not work on Unix platformsif the execution bit for the script fileis not
set. (To turn on the execution bit, usechnod +x scri pt - nane.)

Theremaining Erlang script file can either contain Erlang sour ce code, aninlined beam file, or aninlined ar chivefile.

An Erlang script file must always contain the mai n/ 1 function. When the script isrun, themai n/ 1 functioniscalled
with alist of strings representing the arguments specified to the script (not changed or interpreted in any way).

If themai n/ 1 function in the script returns successfully, the exit status for the script is 0. If an exception is generated
during execution, a short message is printed and the script terminates with exit status 127.

To return your own non-zero exit code, call hal t (Exi t Code) , for example:

halt(1).

To retrieve the pathname of the script, call escri pt: scri pt _name() fromyour script (the pathnameisusually,
but not always, absolute).

If the file contains source code (as in the example above), it is processed by the epp preprocessor. This means that
you, for example, can use predefined macros (such as ?MODULE) and include directives likethe -i ncl ude _|ib
directive. For example, use

-include lib("kernel/include/file.hrl").

to include the record definitions for the records used by function fi | e: read_I i nk_i nf o/ 1. You can also select
encoding by including an encoding comment here, but if avalid encoding comment exists on the second line, it takes
precedence.

The script is checked for syntactic and semantic correctness before it is run. If there are warnings (such as unused
variables), they are printed and the script will still be run. If there are errors, they are printed and the script will not
be run and its exit statusis 127.

Both the module declaration and the export declaration of the nai n/ 1 function are optional.

By default, the script will be interpreted. Y ou can force it to be compiled by including the following line somewhere
in the script file:

-mode(compile).

Execution of interpreted code is slower than compiled code. If much of the execution takes place in interpreted code,
it can be worthwhile to compile it, although the compilation itself takes alittle while. Also, nat i ve can be supplied
instead of conpi | e. This compiles the script using the native flag and may or may not be worthwhile depending
on the escript characteristics.

As mentioned earlier, a script can contains precompiled beamcode. In a precompiled script, the interpretation of the
script header isthe same as in a script containing source code. This means that you can make abeamfile executable
by prepending thefile with the lines starting with #! and %88 mentioned above. In aprecompiled script, thermai n/ 1
function must be exported.

Another option is to have an entire Erlang archive in the script. In an archive script, the interpretation of the script
header is the same as in a script containing source code. This means that you can make an archive file executable
by prepending the file with the lines starting with #! and %84 mentioned above. In an archive script, the mai n/ 1

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 293

escript

function must be exported. By default the mai n/ 1 function in the module with the same name as the basename of the
escri pt fileisinvoked. Thisbehavior can be overridden by setting flag - escri pt mai n Modul e asone of the
emulator flags. Modul e must be the name of a module that has an exported mai n/ 1 function. For more information
about archives and code loading, see code(3) .

Itisoften very convenient to have aheader in the escript, especially on Unix platforms. However, the header isoptional,
so you directly can "execute" an Erlang module, Beam file, or archive file without adding any header to them. But
then you have to invoke the script as follows:

$ escript factorial.erl 5
factorial 5 = 120
$ escript factorial.beam 5
factorial 5 = 120
$ escript factorial.zip 5
factorial 5 = 120

escript:create(FileOrBin, Sections) -> ok | {ok, binary()} | {error, term()}
Types:

FileOBin = filenanme() | 'binary'

Sections = [Header] Body | Body

Header = shebang | {shebang, Shebang} | corment | {comment, Conment}
| {emu_args, EmuArgs}
Shebang = string() | 'default' | 'undefined
Comment = string() | 'default' | 'undefined
EnuArgs = string() | 'undefined
Body = {source, SourceCode} | {beam Beantode} | {archive, ZipArchive}

| {archive, ZipFiles, Z pOptions}

Sour ceCode = BeantCode = file:filenane() | binary()

Zi pArchive = zip:filenane() | binary()

ZipFiles = [Zi pFil e]

ZipFile = file:filenane() | {file:filename(), binary()} |

{file:filename(), binary(), file:file_info()}

Zi pOptions = [zip:create_option()]
Creates an escript from alist of sections. The sections can be specified in any order. An escript beginswith an optional
Header followed by a mandatory Body. If the header is present, it does always begin with ashebang, possibly
followed by acoment andemu_ar gs. Theshebang defaultsto” / usr/ bi n/ env escri pt".Theconmrent

defaultsto" This is an -*- erlang -*- file".Thecreated escript can either be returned as a binary
or written to file.

As an example of how the function can be used, we create an interpreted escript that uses enmu_ar gs to set some
emulator flag. In this case, it happens to disable the snp_support . We also extract the different sections from the
newly created script:

294 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

> Source = "%% Demo\nmain(_Args) ->\n io:format(erlang:system _info(smp support)).\n
"%% Demo\nmain(Args) ->\n io:format(erlang:system info(smp support)).\n"
> io:format("~s\n", [Source]).
%% Demo
main(_Args) ->
io:format(erlang:system info(smp_ support)).

ok

> {ok, Bin} = escript:create(binary, [shebang, comment, {emu args, "-smp disable"},
{source, list to binary(Source)}]).

{ok,<<"#!/usr/bin/env escript\n%% This is an -*- erlang -*- file\n%%!-smp disabl"...>>}

> file:write file("demo.escript", Bin).

ok

> os:cmd("escript demo.escript").

"false"

> escript:extract("demo.escript", []).
{ok, [{shebang,default}, {comment,default}, {emu args,"-smp disable"},
{source,<<"%% Demo\nmain(_Args) ->\n io:format(erlang:system info(smp su"...>>}1}

An escript without header can be created as follows:

> file:write file("demo.erl",
["%% demo.erl\n-module(demo).\n-export([main/1]).\n\n", Source]).
ok
> {ok, , BeamCode} = compile:file("demo.erl", [binary, debug infol).
{ok,demo,
<<70,79,82,49,0,0,2,208,66,69,65,77,65,116,111,169,0,0,0,
79,0,0,0,9,4,100,...>>}
> escript:create("demo.beam", [{beam, BeamCode}]).
ok
> escript:extract("demo.beam", [1).
{ok, [{shebang,undefined}, {comment,undefined}, {emu_ args,undefined},
{beam,<<70,79,82,49,0,0,3,68,66,69,65,77,65,116,
111,109,0,0,0,83,0,0,0,9,...>>}1}
> os:cmd("escript demo.beam").
"true"

Here we create an archive script containing both Erlang code and Beam code, then we iterate over all files in the
archive and collect their contents and some information about them:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 295

escript

> {ok, SourceCode} = file:read file("demo.erl").
{ok,<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(Arg"...>>}
> escript:create("demo.escript",
[shebang,
{archive, [{"demo.erl", SourceCode},
{"demo.beam", BeamCode}], [1}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu args,undefined},
{archive, ArchiveBin}]1} = escript:extract("demo.escript", []).
{ok, [{shebang,default}, {comment,undefined}, {emu args,undefined},
{{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60, 105,
152,61,93,107,0,0,0,118,0,...>>}1}
> file:write file("demo.zip", ArchiveBin).
ok
> zip:foldl(fun(N, I, B, A) -> [{N, I(), B()} | Al end, [], "demo.zip").
{ok, [{"demo.beam",
{file info,748,regular,read write,
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
54,1,0,0,0,0,0},
<<70,79,82,49,0,0,2,228,66,69,65,77,65,116,111,109,0,0,0,
83,0,0,...>>},
{"demo.erl",
{file info, 118, regular,read write,
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
54,1,0,0,0,0,0},
<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(Arg"...>>}1}

escript:extract(File, Options) -> {ok, Sections} | {error, term()}
Types.

File = fil enane()

Options =[] | [compil e_source]

Sections = Headers Body

Headers = {shebang, Shebang} {comment, Comment} {enu_args, EnuArgs}

Shebang = string() | 'default' | 'undefined

Comrent = string() | 'default' | 'undefined

EmuArgs = string() | 'undefined

Body = {source, SourceCode} | {source, BeantCode} | {beam BeanCode}

| {archive, ZipArchive}
Sour ceCode = BeanCode = Zi pArchive = binary()

Parses an escript and extracts its sections. Thisisthe reverse of cr eat e/ 2.

All sections are returned even if they do not exist in the escript. If a particular section happensto have the same value
as the default value, the extracted value is set to the atom def aul t . If a section is missing, the extracted value is
set to the atom undef i ned.

Option conpi | e_sour ce only affects the result if the escript contains sour ce code. In this case the Erlang code
isautomatically compiled and { sour ce, BeamCode} isreturned instead of { sour ce, Sour ceCode}.

Example:

296 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

escript

> escript:create("demo.escript",
[shebang, {archive, [{"demo.erl", SourceCode},
{"demo.beam", BeamCode}], [1}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu args,undefined},
{archive, ArchiveBin}]} =
escript:extract("demo.escript", []).
{ok, [{{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
152,61,93,107,0,0,0,118,0,...>>}
{emu_args,undefined}]}

escript:script name() -> File
Types.
File = fil enane()

Returnsthe name of the escript that isexecuted. If the function isinvoked outside the context of an escript, the behavior
is undefined.

Options Accepted By escript

-C
Compiles the escript regardless of the value of the mode attribute.

-d
Debugs the escript. Starts the debugger, loads the module containing the mai n/ 1 function into the debugger,
sets abreakpoint in mai n/ 1, and invokes mai n/ 1. If the module is precompiled, it must be explicitly
compiled with option debug_i nf o.

Interprets the escript regardless of the value of the mode attribute.

Performs a syntactic and semantic check of the script file. Warnings and errors (if any) are written to the
standard output, but the script will not be run. The exit statusis O if any errors are found, otherwise 127.

Compilesthe escript using flag +nat i ve.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 297

erlsrv

erlsrv

Command

This utility is specific to Windows NT/2000/XP (and later versions of Windows). It allows Erlang emulatorsto run as
services on the Windows system, allowing embedded systemsto start without any user needing to log on. The emulator
started in this way can be manipulated through the Windows services appl et in amanner similar to other services.

Noticethat er | srv isnot agenera service utility for Windows, but designed for embedded Erlang systems.
er | srv also provides acommand-line interface for registering, changing, starting, and stopping services.

To manipulate services, the logged on user is to have administrator privileges on the machine. The Erlang machine
itself is (default) run asthe local administrator. This can be changed with the Services applet in Windows.

The processes created by the service can, as opposed to normal services, be "killed" with the task manager. Killing an
emulator that is started by a service triggers the "OnFail" action specified for that service, which can be a reboot.

The following parameters can be specified for each Erlang service:
St opActi on

Tellser | srv how to stop the Erlang emulator. Default is to kill it (Win32 TerminateProcess), but this action
can specify any Erlang shell command that will be executed in the emulator to make it stop. The emulator is
expected to stop within 30 seconds after the command is issued in the shell. If the emulator is not stopped, it
reports a running state to the service manager.

OnFai |
Can be one of the following:
r eboot

The Windows system is rebooted whenever the emulator stops (a more simple form of watchdog). This can
be useful for less critical systems, otherwise use the heart functionality to accomplish this.

restart

Makes the Erlang emulator be restarted (with whatever parameters are registered for the service at the
occasion) when it stops. If the emulator stops again within 10 seconds, it is not restarted to avoid an infinite
loop, which could hang the Windows system.

restart_al ways

Similar tor est ar t , but does not try to detect cyclic restarts; it is expected that some other mechanism is
present to avoid the problem.

i gnor e (the default)
Reports the service as stopped to the service manager whenever it fails; it must be manually restarted.

On asystem where release handling isused, thisisalwaystobesettoi gnor e. Usehear t torestart the service
on failure instead.

Machi ne

Thelocation of the Erlang emulator. The default istheer | . exe located inthe samedirectory aser | srv. exe.
Do not specify wer | . exe asthisemulator, it will not work.

If the system uses release handling, thisisto be set to aprogram similar tost art _er | . exe.

298 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlsrv

Env

Specifies an extra environment for the emulator. The environment variables specified here are added to the
system-wide environment block that is normally present when a service starts up. Variables present in both the
system-wide environment and in the service environment specification will be set to the value specified in the
service.

WorkDi r

The working directory for the Erlang emulator. Must be on alocal drive (no network drives are mounted when
aservice starts). Default working directory for servicesis %Gy st enDr i ve9%84By st enPat h% Debug log files
will be placed in this directory.

Priority

The process priority of the emulator. Can be one of the following:

realtine
Not recommended, as the machine will possibly be inaccessible to interactive users.

hi gh
Can be used if two Erlang nodes are to reside on one dedicated system and one is to have precedence over
the other.

| ow
Can be used if interactive performance is not to be affected by the emulator process.

def aul t (the default>
SNanme or Nane

Specifiesthe short or long node name of the Erlang emulator. The Erlang services are always distributed. Default
isto use the service name as (short) nodename.

DebugType

Specifies that output from the Erlang shell is to be sent to a "debug log". The log file is named
<servicename>. debug or <servicename>. debug. <N>, where <N> is an integer from 1 through 99. The log
fileis placed in the working directory of the service (as specified in Wor kDi).

Can be one of the following:
new
Uses a separate log file for every invocation of the service (<servicename>. debug. <N>).
reuse
Reuses the same log file (<servicename>. debug).
consol e

Opens an interactive Windows console window for the Erlang shell of the service. Automatically disables
the St opAct i on. A service started with an interactive consol e window does not survive logouts. OnFai |
actions do not work with debug consoles either.

none (the default)
The output of the Erlang shell is discarded.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 299

erlsrv

The consol e option is not intended for production. It is only a convenient way to debug Erlang services
during development.

Thenewand r euse options might seem convenient in a production system, but consider that the logs grow
indefinitely during the system lifetime and cannot be truncated, except if the serviceis restarted.

In short, the DebugType isintended for debugging only. Logs during production are better produced with
the standard Erlang logging facilities.

Args

Passes extra arguments to the emulator startup program er | . exe (or start _erl . exe). Arguments that
cannot be specified here are - noi nput (St opAct i ons would not work), - nane, and - snane (they are
specified in any way). The most common useisfor specifying cookies and flagsto be passedtoi ni t : boot ()

(-s)
I nt er nal Ser vi ceNane

Specifies the Windows-internal service name (not the display name, which isthe one er | sr v usesto identify
the service).

This internal name cannot be changed, it is fixed even if the service is renamed. er | sr v generates a unique
internal name when a service is created. It is recommended to keep to the default if release handling is to be
used for the application.

Theinternal service name can be seen in the Windows service manager if viewing Pr operti es for an Erlang
service.

Comment

A textual comment describing the service. Not mandatory, but shows up asthe service description in the Windows
service manager.

The naming of the service in a system that uses release handling must follow the convention NodeName Release,
where NodeNameisthefirst part of the Erlang node name (up to, but not including the" @") and Releaseisthe current
release of the application.

Exports

erlsrv {set | add} <service-name> [<service options>]

Theset andadd commands modifiesor addsan Erlang service, respectively. The simplest form of an add command
is without any optionsin which case all default values (described above) apply. The service name is mandatory.

Every option can be specified without parameters, the default value is then applied. Valuesto the options are supplied
only when the default is not to be used. For example, er | srv set myservice -prio -arg setsthe default
priority and removes all arguments.

Service options:
-st[opaction] [<erlang shell comrand>]

Definesthe St opAct i on, the command given to the Erlang shell when the serviceis stopped. Default is none.
-on[fail] [{reboot | restart | restart_al ways}]

The action to take when the Erlang emulator stops unexpectedly. Default isto ignore.

300 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlsrv

-nf achi ne] [<erl-conmand>]

The complete path to the Erlang emulator. Never use the wer | program for this. Defaultsto theer | . exe in
the same directory aser | srv. exe. When release handling is used, this is to be set to a program similar to
start _erl. exe.

-e[nv] [<vari abl e>[=<val ue>]]

Edits the environment block for the service. Every environment variable specified is added to the system
environment block. If a variable specified here has the same name as a system-wide environment variable,
the specified value overrides the system-wide. Environment variables are added to this list by specifying
<variable>=<value> and deleted from the list by specifying <variable> alone. The environment block is
automatically sorted. Any number of - env options can be specified in one command. Default isto use the system
environment block unmodified (except for two additions, see section Environment below).

-workdir] [<directory>]

Theinitial working directory of the Erlang emulator. Defaults to the system directory.
-p[riority] [{low high|realtine}]

The priority of the Erlang emulator. Default to the Windows default priority.
{-sn[ane] | -n[ane]} [<node-nane>]

The node name of the Erlang machine. Distribution is mandatory. Defaultsto - snane <servi ce nane>.
-d[ebugt ype] [{new reuse| consol e}]

Specifieswhere shell output isto be sent. Default isthat shell output is discarded. To be used only for debugging.
-ar[gs] [<limted erl argunents>]

Extra arguments to the Erlang emulator. Avoid - noi nput , - noshel | , and - snane/- nane. Default is no
extra arguments. Remember that the services cookie file is not necessarily the same as the interactive users. The
service runs as the local administrator. Specify all arguments together in one string, use double quotes (*) to
specify an argument string containing spaces, and use quoted quotes (\") to specify a quote within the argument
string if necessary.
-i[nternal servicename] [<internal nanme>]

Only allowed for add. Specifies a Windows-internal service name for the service, which by default is set to
something unique (prefixed with the original service name) by er | sr v when adding a new service. Specifying
this is a purely cosmethic action and is not recommended if release handling is to be performed. The internal

service name cannot be changed once the service is created. The internal name is not to be confused with the
ordinary service name, which isthe name used to identify aservicetoer | srv.

-c[omment] [<short description>]

Specifies a textual comment describing the service. This comment shows up as the service description in the
Windows service manager.

erlsrv {start | start disabled | stop | disable | enable} <service-name>

These commands are only added for convenience, the normal way to manipulate the state of a service is through the
control panels services applet.

Thestart and st op commands communicates with the service manager for starting and stopping a service. The
commands wait until the service is started or stopped. When disabling a service, it is not stopped, the disabled state
does not take effect until the service is stopped. Enabling a service setsit in automatic mode, which is started at boot.
This command cannot set the service to manual.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 301

erlsrv

Thest art _di sabl ed command operates on a service regardless of if it is enabled/disabled or started/stopped. It
does this by first enabling it (regardless of if it is enabled or not), then starting it (if not already started), and then
disabling it. The result isadisabled but started service, regardless of itsearlier state. Thisisuseful for starting services
temporarily during arelease upgrade. The difference between using st art _di sabl ed and the sequence enabl e,
start, and di sabl e is that all other er| srv commands are locked out during the sequence of operations in
start _di sabl e, making the operation atomic froman er | sr v user's point of view.

erlsrv remove <service-name>
Removes the service completely with all its registered options. It is stopped before it is removed.

erlsrv list [<service-name>]

If no service name is specified, a brief listing of al Erlang services is presented. If a service name is supplied, all
options for that service are presented.

erlsrv help
Displays a brief help text.

Environment
The environment of an Erlang machine started as a service contains two special variables:

ERLSRV_SERVI CE_NAME
The name of the service that started the machine.

ERLSRV_EXECUTABLE
Thefull pathtotheer| srv. exe, which can be used to manipulate the service. This comes in handy when
defining a heart command for your service.

A command file for restarting a service looks as follows:

@echo off
%ERLSRV_EXECUTABLES% stop %ERLSRV_SERVICE NAMES
%ERLSRV_EXECUTABLES% start %ERLSRV_SERVICE NAMES

This command file is then set as heart command.

The environment variables can also be used to detect that we are running as a service and make port programs react
correctly to the control events generated on logout (see the next section).

Port Programs

When a program runs in the service context, it must handle the control events that are sent to every program in the
system when theinteractive user logs off. Thisisdonein different waysfor programs running in the consol e subsystem
and programs running as window applications. An application running in the console subsystem (normal for port
programs) uses the win32 function Set Consol eCt r | Handl er to register a control handler that returnst r ue
in answer to the CTRL_LOGOFF_EVENT and CTRL_SHUTDOAN_EVENT events. Other applications only forward
WM _ENDSESSI ON and WM QUERYENDSESSI ON to the default window procedure.

A brief examplein C of how to set the console control handler:

302 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlsrv

#include <windows.h>
/*
** A Console control handler that ignores the log off events,
** and lets the default handler take care of other events.
*/
BOOL WINAPI service aware handler (DWORD ctrl){
if(ctrl == CTRL_LOGOFF_EVENT)
return TRUE;
if(ctrl == CTRL_SHUTDOWN EVENT)
return TRUE;
return FALSE;
)

void initialize handler(void){

char buffer[2];

/*
* We assume we are running as a service if this
* environment variable is defined.
S

if(GetEnvironmentVariable ("ERLSRV_SERVICE NAME", buffer,

(DWORD) 2)){

/*
** Actually set the control handler
*/
SetConsoleCtrlHandler (&service aware handler, TRUE);
}
}
Notes

Although the options are described in a Unix-like format, the case of the options or commands is not relevant, and
both character "/* and "-" can be used for options.

Notice that the program resides in the emulator's bi n directory, not in the bi n directory directly under the Erlang
root. The reasons for this are the subtle problem of upgrading the emulator on arunning system, where anew version
of the runtime system should not need to overwrite existing (and probably used) executables.

To manipulate the Erlang services easily, put the <er| ang_r oot >\ ert s- <ver si on>\ bi n directory in the
path instead of <er| ang_r oot >\ bi n. The er| srv program can be found from inside Erlang by using the
os: find_execut abl e/ 1 Erlang function.

For release handlingtowork, usest art _er | asthe Erlang machine. As stated above, the service nameissignificant.

See Also

start_erl (1), rel ease_handl er (3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 303

start_erl

start_erl

Command

Thestart_er| program is specific to Windows NT/2000/XP (and later versions of Windows). Although there are
programs with the same name on other platforms, their functionality is different.

This program is distributed both in compiled form (under <Erlang root>\\erts-<version>\\bin) and in source form
(under <Erlang root>\\erts-<version>\\src). The purpose of the source code isto ease customization of the program for
local needs, such as cyclic restart detection. There is also a "make"-file, written for the nmake program distributed
with Microsoft Visual C++. This program can, however, be compiled with any Win32 C compiler (possibly with
minor modifications).

This program aids release handling on Windows systems. The program isto be called by the er | sr v program, read
up therelease datafilest art _er| . dat a, and start Erlang. Some optionsto st art _er | are added and removed
by the release handler during upgrade with emulator restart (more specifically option - dat a).

Exports

start _erl [<erl options>] ++ [<start erl options>]
Thestart_er| programinitsoriginal form recognizes the following options:

++

Mandatory. Delimitsst art _er | optionsfrom normal Erlang options. Everything on the command line before
++ is interpreted as options to be sent to the er | program. Everything after ++ is interpreted as options to
start _erl itsalf.

-reldir <rel ease root>

Mandatory if environment variable RELDI R is not specified and no - r oot di r option is specified. Tells
start_er| wheretheroot of the release tree islocated in the file system (typically <Erlang root>\\rel eases).
Thest art _er| . dat afileisexpectedto belocated in thisdirectory (unless otherwise specified). If only option
-root di r isspecified, the directory is assumed to be <Erlang root>\\releases.

-rootdir <Erlang root directory>

Mandatory if - r el di r is not specified and no RELDI R exists in the environment. This specifies the Erlang
installation root directory (under which thel i b, r el eases, andert s- <Ver si on> directories are located).
If only - r el di r (or environment variable RELDI R) is specified, the Erlang root is assumed to be the directory
exactly one level above the release directory.

-data <data file nanme>

Optional. Specifiesanother datafilethanst art _er| . dat a inthe <releaseroot>. It is specified relative to the
<release root> or absolute (including drive letter, and so on). This option is used by the release handler during
upgrade and isnot to be used during normal operation. Normally therel ease datafileisnot to be named differently.

-boot fl ags <boot flags file nane>

Optional. Specifies afile name relative to the release directory (that is, the subdirectory of <release root> where
the. boot file and others are located). The contents of thisfile is appended to the command line when Erlang is
started. This makes it easy to start the emulator with different options for different releases.

304 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

start_erl

Notes
» Asthe source codeis distributed, it can easily be modified to accept other options. The program must still accept
option - dat a with the semantics described above for the release handler to work correctly.

e TheErlang emulator isfound by examining the registry keysfor the emulator version specified in the rel ease data
file. The new emulator must be properly installed before the upgrade for thisto work.

* Althoughthe programislocated together with files specific to the emulator version, it isnot expected to be specific
to the emulator version. The release handler does not change option - machi ne to er | srv during emulator
restart. L ocate the (possibly customized) st art _er | program so that it is not overwritten during upgrade.

e The default options of the er| srv program are not sufficient for release handling. The machine started by
erl srvisbespecifiedasthest art _er| program and the argumentsareto contain ++ followed by the desired
options.

See Also

erlsrv(1l), rel ease_handl er (3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 305

run_erl

run_erl

Command

Therun_er| program is specific to Unix systems. This program redirects the standard input and standard output
streams so that all output can be logged. It also lets the programt o_er | connect to the Erlang console, making it
possible to monitor and debug an embedded system remotely.

For more information about the use, see the Embedded System User's Guide in System Documentation.

Exports

run_erl [-daemon] pipe dir/ log dir "exec command argl arg2 ..."
Arguments:
- daenon

This option is highly recommended. It makesr un_er | run in the background completely detached from any
controlling terminal and the command returns to the caller immediately. Without this option, r un_er | must
be started using several tricks in the shell to detach it completely from the terminal in use when starting it. The
option must be the first argument tor un_er | on the command line.

pipe dir

The named pipe, usualy / t nmp/ . It must be suffixed by a/ (slash), that is, / t np/ epi pes/, not / t np/
epi pes.

log dir
Thelog files, that is:

e Onelogfile run_erl .| og, whichlogs progressand warnings from ther un_er | program itself.

e Up to five log files at maximum 100 KB each with the content of the standard streams from and to
the command. (Both the number of logs and sizes can be changed by environment variables, see section
Environment Variables below.)

When thelogsarefull, run_er | deletes and reuses the oldest log file.
"exec command argl arg2 ..."

A space-separated string specifying the program to be executed. The second field is typically a command name
suchaser| .

Notes concerning the Log Files

Whilerunning, r un_er | sendsall output, uninterpreted, to alog file. Thefileisnameder | ang. | og. N, whereNis
aninteger. When thelog is"full" (default log sizeis100 KB), run_er | startstologinfileer| ang. | og. (N+1),
until N reaches a certain number (default 5), whereupon N starts at 1 again and the ol dest files start getting overwritten.

If no output comesfrom the Erlang shell, but the Erlang machine still seemsto bealive, an"ALIVE" messageiswritten
to the log; it is atime stamp and is written, by default, after 15 minutes of inactivity. Also, if output from Erlang is
logged, but more than 5 minutes (default) has passed since last time we got anything from Erlang, a time stamp is
writteninthelog. The"ALIVE" messages ook as follows:

===== ALIVE <date-time-string>

The other time stamps look as follows:

306 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

run_erl

===== <date-time-string>

dat e-ti me- stri ng isthe date and time the message is written, default in local time (can be changed to UTC if
needed). It is formatted with the ANSI-C function st r f t i me using the format string Y& %% % % % %,
which produces messages like ===== ALI VE Thu May 15 10:13:36 MEST 2003; this can be changed,
see the next section.

Environment Variables

The following environment variables are recognized by run_er| and change the logging behavior. For more
information, see the previous section.

RUN_ERL_LOG ALl VE_M NUTES

How long to wait for output (in minutes) beforewriting an "ALIVE" messageto thelog. Defaultsto 15, minimum
isl

RUN_ERL_LOG_ACTI VI TY_M NUTES

How long Erlang needs to be inactive before output is preceded with a time stamp. Defaults to
RUN_ERL_LOG ALI VE_M NUTES di v 3, minimumis1.

RUN_ERL_LOG ALl VE_FORNAT

Specifies another format string to be used in the strfti me C library call. That is, specifying thisto " %e-
%h- %Y, 9% %" giveslog messages with time stamps like 15- May- 2003, 10: 23: 04 MET. For more
information, seethe documentation for the Clibrary functionst r f t i me. Defaultsto" % % % %0 %&Z %" .

RUN_ERL_LOG ALI VE_| N_UTC

If set to anything elsethan O, it makesall timesdisplayed by r un_er | tobeinUTC (GMT, CET, MET, without
Daylight Saving Time), rather than in local time. This does not affect data coming from Erlang, only the logs
output directly by run_er | . Application SASL can be modified accordingly by setting the Erlang application
variableut c_| ogtot r ue.

RUN_ERL_LOG_GENERATI ONS

Controls the number of log files written before older files are reused. Defaults to 5, minimum is 2, maximum
is1000.

Notethat, asaway to indicate the newest file, r un_er | will delete the oldest log fileto maintain a"hol€" in the
file sequences. For example, if log files#1, #2, #4 and #5 exists, that means #2 is the latest and #4 is the ol dest.
Y ou will therefore at most get one lesslog file than the value set by RUN_ERL_LOG_GENERATI ONS.

RUN_ERL_LOG MAXSI ZE

Thesize, in bytes, of alog file before switching to anew log file. Defaultsto 100000, minimum is 1000, maximum
is about 2"30.

RUN_ERL_DI SABLE_FLOACNTRL

If defined, disables input and output flow control for the pty opend by r un_er | . Useful if you want to remove
any risk of accidentally blocking the flow control by using Ctrl-S (instead of Ctrl-D to detach), which can result
in blocking of the entire Beam process, and in the case of running heart as supervisor even the heart process
becomes blocked when writing log message to terminal, leaving the heart process unable to do its work.

See Also

start(1),start_erl (1)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 307

start

start

Command

Thest art scriptisan example script on how to start up the Erlang system in embedded mode on Unix.
For more information about the use, see the Embedded System User's Guide in System Documentation.

Exports

start [data file]
Argument:
data_file
Optional. Specifieswhat st art _er | . dat a fileto use.

Environment variable RELDI R can be set before calling this example, which sets the directory where to find the
releasefiles.

See Also

run_erl (1),start_erl (1)

308 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

erl_driver
C Library

An Erlang driver isalibrary containing a set of native driver callback functions that the Erlang Virtual Machine calls
when certain events occur. There can be multipleinstances of adriver, each instance is associated with an Erlang port.

Usethisfunctionality with extreme care.

A driver callback is executed as a direct extension of the native code of the VM. Execution is not made in a safe
environment. The VM cannot provide the same services as provided when executing Erlang code, such as pre-
emptive scheduling or memory protection. If the driver callback function does not behave well, the whole VM
will misbehave.

e A driver callback that crash will crash the whole VM.

* An erroneously implemented driver callback can cause aVM internal state inconsistency, which can cause a
crash of the VM, or miscellaneous misbehaviors of the VM at any point after the call to the driver callback.

e A driver calback doing lengthy work before returning degrades responsiveness of the VM and can cause
miscellaneous strange behaviors. Such strange behaviorsinclude, but are not limited to, extreme memory usage
and bad load balancing between schedulers. Strange behaviors that can occur because of lengthy work can
also vary between Erlang/OTP releases.

As from ERTS 5.5.3 the driver interface has been extended (see ext ended nar ker). The extended interface
introduces version management, the possibility to pass capability flags (see dri ver _f | ags) to the runtime system
at driver initialization, and some new driver API functions.

Asfrom ERTS 5.9 old drivers must be recompiled and use the extended interface. They must also be adjusted to
the 64-bit capable driver interface.

The driver calls back to the emulator, using the API functions declared in er| _dri ver. h. They are used for
outputting data from the driver, using timers, and so on.

Each driver instance is associated with a port. Every port has a port owner process. Communication with the port
is normally done through the port owner process. Most of the functions take the por t handle as an argument. This
identifies the driver instance. Notice that this port handle must be stored by the driver, it is not given when the driver
is called from the emulator (see dri ver _entry).

Some of the functions take a parameter of type Er | Dr vBi nar y, adriver binary. It isto be both allocated and freed
by the caller. Using a binary directly avoids one extra copying of data.

Many of the output functions have a "header buffer", with hbuf and hl en parameters. This buffer is sent as alist
beforethebinary (or list, depending on port mode) that is sent. Thisis convenient when matching on messagesreceived
from the port. (Although in the latest Erlang versions there is the binary syntax, which enables you to match on the
beginning of abinary.)

In the runtime system with SMP support, drivers are locked either on driver level or port level (driver instance level).
By default driver level locking will be used, that is, only one emulator thread will execute code in the driver at a
time. If port level locking is used, multiple emulator threads can execute code in the driver at the same time. Only
one thread at a time will call driver callbacks corresponding to the same port, though. To enable port level locking,
setthe ERL_DRV_FLAG USE PORT_LOCKI NGdriver flaginthedri ver _ent ry used by the driver. When port

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 309

erl_driver

level locking is used, the driver writer isresponsible for synchronizing all accesses to data shared by the ports (driver
instances).

Most drivers written before the runtime system with SMP support existed can run in the runtime system with SMP
support, without being rewritten, if driver level locking is used.

Note:

It is assumed that drivers do not access other drivers. If drivers access each other, they must provide their own
mechanism for thread-safe synchronization. Such "inter-driver communication™ is strongly discouraged.

Previoudly, in the runtime system without SMP support, specific driver callbacks were aways called from the same
thread. Thisisnot the casein the runtime system with SMP support. Regardless of locking scheme used, callsto driver
callbacks can be made from different threads. For example, two consecutive calls to exactly the same callback for
exactly the same port can be made from two different threads. Thisis for most drivers not a problem, but it can be.
Drivers that depend on all callbacks that are called in the same thread, must be rewritten before they are used in the
runtime system with SMP support.

Regardless of locking scheme used, calls to driver callbacks can be made from different threads.

Most functions in this API are not thread-safe, that is, they cannot be called from any thread. Functions that are not
documented as thread-safe can only be called from driver callbacks or function calls descending from adriver callback
call. Noticethat driver callbacks can be called from different threads. This, however, isnot aproblem for any function
in this API, as the emulator has control over these threads.

Functions not explicitly documented as thread-safe are not thread safe. Also notice that some functions are only
thread-safe when used in aruntime system with SMP support.

A function not explicitly documented as thread-safe can, at some point in time, have a thread-safe implementation
in the runtime system. Such an implementation can however change to athread unsafeimplementation at any time
without any notice.

Only use functions explicitly documented as thr ead-safe from arbitrary threads.

As mentioned in the warning text at the beginning of this section, it is of vital importance that a driver callback
returns relatively fast. It is difficult to give an exact maximum amount of time that a driver callback is allowed
to work, but usually a well-behaving driver callback is to return within 1 millisecond. This can be achieved using
different approaches. If you have full control over the code to execute in the driver callback, the best approach is to
divide the work into multiple chunks of work, and trigger multiple calls to the time-out callback using zero time-outs.
Function erl _drv_consune_ti nesl i ce can be useful to determine when to trigger such time-out callback
calls. However, sometimes it cannot be implemented this way, for example when calling third-party libraries. In this
case, you typically want to dispatch the work to another thread. Information about thread primitivesis provided below.

Functionality

All functions that a driver needs to do with Erlang are performed through driver API functions. Functions exist for
the following functionality:

310 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Timer functions

Control the timer that a driver can use. The timer has the emulator call the ti meout entry function after a
specified time. Only onetimer is available for each driver instance.

Queue handling

Every driver instance has an associated queue. This queueisaSys| OVec, which works as a buffer. It is mostly
used for the driver to buffer data that is to be written to a device, it is a byte stream. If the port owner process
closes the driver, and the queue is not empty, the driver is not closed. This enables the driver to flush its buffers
before closing.

The queue can be manipulated from any threads if a port data lock is used. For more information, see
Er | Dr vPDL.

Output functions

With these functions, the driver sends data back to the emulator. The data is received as messages by the port
owner process, see er | ang: open_port/ 2. The vector function and the function taking a driver binary are
faster, as they avoid copying the data buffer. Thereis also afast way of sending terms from the driver, without
going through the binary term format.

Failure

Thedriver can exit and signal errors up to Erlang. Thisisonly for severe errors, when the driver cannot possibly
keep open.
Asynchronous calls

Erlang/OTP R7B and later versions have provision for asynchronous function calls, using athread pool provided
by Erlang. Thereis also a select call, which can be used for asynchronous drivers.

Multi-threading

A POSIX thread like API for multi-threading is provided. The Erlang driver thread API only provides a subset of
the functionality provided by the POSIX thread API. The subset provided is more or less the basic functionality
needed for multi-threaded programming:

e Threads

e Mutexes

¢ Condition variables
e Read/writelocks

e Thread-specific data

The Erlang driver thread API can be used in conjunction with the POSIX thread APl on UN-ices and with the
Windows native thread APl on Windows. The Erlang driver thread APl has the advantage of being portable,
but there can exist situations where you want to use functionality from the POSIX thread API or the Windows
native thread API.

The Erlang driver thread APl only returns error codes when it is reasonable to recover from an error condition.
If it is not reasonable to recover from an error condition, the whole runtime system is terminated. For example,
if a create mutex operation fails, an error code is returned, but if alock operation on a mutex fails, the whole
runtime system is terminated.

Notice that there is no "condition variable wait with time-out" in the Erlang driver thread API. This because
of issues with pt hr ead_cond_t i nedwai t . When the system clock suddenly is changed, it is not always
guaranteed that you will wake up from the call as expected. An Erlang runtime system must be able to cope with
sudden changes of the system clock. Therefore, we have omitted it from the Erlang driver thread API. In the
Erlang driver case, time-outs can and are to be handled with the timer functionality of the Erlang driver API.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 311

erl_driver

In order for the Erlang driver thread API to function, thread support must be enabled in the runtime system.
An Erlang driver can check if thread support is enabled by use of driver_system i nfo. Notice that
some functions in the Erlang driver APl are thread-safe only when the runtime system has SMP support, also
this information can be retrieved through dri ver _syst em i nf 0. Also notice that many functions in the
Erlang driver APl are not thread-safe, regardless of whether SMP support is enabled or not. If afunction is not
documented as thread-safe, it is not thread-safe.

When executing in an emulator thread, it isvery important that you unlock all locks you have locked before
letting the thread out of your control; otherwise you are very likely to deadlock the whole emulator.

If you need to use thread-specific datain an emulator thread, only have the thread-specific data set while the
thread is under your control, and clear the thread-specific data before you let the thread out of your control.

In the future, debug functionality will probably be integrated with the Erlang driver thread API. All functions
that create entitiestake anane argument. Currently the nane argument is unused, but it will be used when the
debug functionality is implemented. If you name all entities created well, the debug functionality will be able
to give you better error reports.

Adding/removing drivers

A driver can add and later remove drivers.
Monitoring processes

A driver can monitor a process that does not own a port.
Version management

Version management is enabled for drivers that have set the extended_narker field of their
driver_entrytoERL_DRV_EXTENDED MARKER. er| _dri ver. h defines.

« ERL_DRV_EXTENDED MARKER

e ERL_DRV_EXTENDED MAJOR VERSI ON, which is incremented when driver incompatible changes
are made to the Erlang runtime system. Normally it suffices to recompile drivers when
ERL_DRV_EXTENDED MAJOR _VERSI ON has changed, but it can, under rare circumstances, mean that
drivers must be dightly modified. If so, thiswill of course be documented.

e ERL_DRV_EXTENDED M NOR_VERSI QN, which is incremented when new features are added. The
runtime system uses the minor version of the driver to determine what featuresto use.

The runtime system normally refuses to load a driver if the major versions differ, or if the major versions are
equal and the minor version used by the driver is greater than the one used by the runtime system. Old drivers
with lower major versions are however alowed after a bump of the major version during a transition period of
two major releases. Such old drivers can, however, fail if deprecated features are used.

The emulator refuses to load a driver that does not use the extended driver interface, to alow for 64-bit capable
drivers, asincompatibletype changesfor thecallbacksout put ,cont r ol ,andcal | wereintroducedin Erlang/
OTP R15B. A driver written with the old types would compile with warnings and when called return garbage
sizes to the emulator, causing it to read random memory and create huge incorrect result blobs.

Therefore it is not enough to only recompile drivers written with version management for pre R15B types; the
types must be changed in the driver suggesting other rewrites, especially regarding size variables. I nvestigate
all war nings when recompiling.

Also, the API driver functions driver _output* and driver_vec to buf, driver_all oc/
real | oc*,andthedri ver _* queuefunctionswerechangedto havelarger length argumentsand return val ues.
Thisis alesser problem, as code that passes smaller types gets them auto-converted in the calls, and as long as
the driver does not handle sizes that overflow ani nt , al will work as before.

312 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Time measurement
Support for time measurement in drivers:
e ErlIDrvTinme
e FErlIDrvTimeUnit
e erl_drv_nonotonic_tine
e erl_drv_time_offset
e erl_drv_convert time_unit

Rewrites for 64-Bit Driver Interface

ERTS 5.9 introduced two new integer types, Er | DrvSi zeT and Er | Dr vSSi zeT, which can hold 64-bit sizes if
necessary.

To not update adriver and only recompile, it probably workswhen building for a 32-bit machine creating afal se sense
of security. Hopefully that will generate many important warnings. But when recompiling the same driver later on for
a 64-bit machine, there will be warnings and almost certainly crashes. So it is a bad idea to postpone updating the
driver and not fixing the warnings.

When recompiling with gcc, useflag - W&t ri ct - pr ot ot ypes to get better warnings. Try to find a similar flag
if you use another compiler.

Thefollowing is achecklist for rewriting a pre ERTS 5.9 driver, most important first;

Return types for driver callbacks
Rrewrite driver callback cont r ol tousereturntypeEr| Dr vSSi zeT instead of i nt .
Rewrite driver callback cal | tousereturntype Er| Dr vSSi zeT instead of i nt .

Note:

These changes are essential not to crash the emulator or worse cause malfunction. Without them adriver can
return garbage in the high 32 bits to the emulator, causing it to build a huge result from random bytes, either
crashing on memory allocation or succeeding with arandom result from the driver call.

Arguments to driver callbacks
Driver callback out put now getsEr | Dr vSi zeT as 3rd argument instead of previously i nt .
Driver callback cont r ol now getsEr | Dr vSi zeT as 4th and 6th arguments instead of previously i nt .
Driver callback cal | now getsEr | DrvSi zeT as 4th and 6th argumentsinstead of previously i nt .

Sane compiler's calling conventions probably make these changes necessary only for a driver to handle data
chunks that require 64-bit size fields (mostly larger than 2 GB, asthat iswhat ani nt of 32 bits can hold). But it
is possible to think of non-sane calling conventions that would make the driver callbacks mix up the arguments
causing malfunction.

The argument type change is from signed to unsigned. This can cause problems for, for example, loop
termination conditions or error conditions if you only change the types all over the place.

Larger si ze fieldinEr | | OVec
Thesi ze fieldinEr | | Ovec hasbeenchangedto Er | Dr vSi zeT fromi nt . Check al code that usethat field.

Automatic type-casting probably makes these changes necessary only for adriver that encounters sizes > 32 hits.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 313

erl_driver

Thesi ze field changed from signed to unsigned. This can cause problemsfor, for example, loop termination
conditions or error conditions if you only change the types all over the place.

Arguments and return values in the driver API

Many driver API functions have changed argument type and/or returnvaluetoEr | DrvSi zeT frommostly i nt .
Automatic type-casting probably makes these changes necessary only for adriver that encounters sizes > 32 hits.

driver _out put

3rd argument

ver _out put 2

3rd and 5th arguments
ver _out put_bi nary
3rd, 5th, and 6th arguments
ver _out putv

3rd and 5th arguments
ver _vec_to_buf

3rd argument and return value
driver_alloc

1st argument

ver realloc

2nd argument
driver_alloc_binary
1st argument

ver _realloc_binary
2nd argument
driver_enq

3rd argument

ver _pushq

3rd argument
driver_deq

2nd argument and return value
ver _sizeq

Return value

ver _eng_bin

3rd and 4th arguments
ver _pushqg_bin

3rd and 4th arguments
driver_enqv

3rd argument

ver _pushqv

3rd argument

ver _peekqv

Return value

dr

dr

dr

dr

dr

dr

dr

dr

dr

dr

dr

dr

This is a change from signed to unsigned. This can cause problems for, for example, loop termination
conditions and error conditionsif you only change the types all over the place.

314 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Data Types

Erl DrvSi zeT

An unsigned integer typeto beused assi ze_t .
DrvSSi zeT

A signed integer type, thesizeof Er | DrvSi zeT.

Er

Er

DrvSysl nfo

typedef struct ErlDrvSysInfo {
int driver _major version;
int driver _minor version;
char *erts version;
char *otp release;
int thread support;
int smp_support;
int async_threads;
int scheduler threads;
int nif major version;
int nif minor version;
int dirty scheduler support;
} ErlDrvSysInfo;

The Erl DrvSysl nf o structure is used for storage of information about the Erlang runtime system.
driver_system i nfo writes the system information when passed a reference to a Er | Dr vSysl nf o
structure. The fieldsin the structure are as follows:

driver _mmjor_version

The value of ERL_DRV_EXTENDED MAJOR VERSI ON when the runtime system was compiled. This
value is the same as the value of ERL_DRV_EXTENDED MAJOR_VERSI ON used when compiling the
driver; otherwise the runtime system would have refused to load the driver.

driver_mi nor_version

The value of ERL_DRV_EXTENDED M NOR_VERSI ON when the runtime system was compiled. This
value can differ from the value of ERL_DRV_EXTENDED M NOR_VERSI ON used when compiling the
driver.

erts_version

A string containing the version number of the runtime system (the same as returned by
erl ang: system.i nfo(version)).

otp_rel ease

A string containing the OTP release number (the same as returned by
erl ang: system i nfo(otp_rel ease)).

t hread_support

A value! = 0 if the runtime system has thread support; otherwise 0.
snp_support

A value! = 0 if the runtime system has SMP support; otherwise 0.
async_t hreads

The number of async threads in the async thread pool used by dri ver _async (the same as returned by
erl ang: system i nfo(t hread_pool _si ze)).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 315

erl_driver

schedul er _t hreads

The number of scheduler threads used by the runtime system (the same as returned by
erl ang: system i nf o(schedul ers)).

ni f _maj or _version
Thevalue of ERL_NI F_MAJOR_VERSI ONwhen the runtime system was compiled.
ni f_mnor_version
Thevalue of ERL_NI F_M NOR_VERSI ON when the runtime system was compiled.
dirty_schedul er _support
A value! = 0 if the runtime system has support for dirty scheduler threads; otherwise 0.
Erl DrvBi nary

typedef struct ErlDrvBinary {
ErlDrvSint orig size;
char orig bytes[];

} ErlDrvBinary;

TheEr | Dr vBi nar y structureisabinary, as sent between the emulator and the driver. All binariesare reference
counted; whendr i ver _bi nary_f r ee iscalled, thereference count is decremented, when it reaches zero, the
binary isdeallocated. ori g_si ze isthebinary sizeand or i g_byt es isthebuffer. Er | Dr vBi nar y has not
afixed size, itssizeisori g_size + 2 * sizeof (int).

Ther ef ¢ field has been removed. The reference count of an Er | Dr vBi nary is now stored elsewhere.
The reference count of an Er | DrvBi nary can be accessed through driver binary get refc,
driver_binary inc_refc,and driver_binary_dec_refc.

Some driver calls, such asdri ver _enq_bi nary, increment the driver reference count, and others, such as
dri ver _deq decrement it.

Using a driver binary instead of anormal buffer is often faster, as the emulator needs not to copy the data, only
the pointer is used.

A driver binary allocated in the driver, with dri ver _al | oc_bi nary, isto be freed in the driver (unless
otherwise stated) withdr i ver _f r ee_bi nary. (Noticethat this does not necessarily deallocateit, if thedriver
isdtill referred in the emulator, the ref-count will not go to zero.)

Driver binaries are used in the dr i ver _out put 2 and dri ver _out put v calls, and in the queue. Also the
driver callback out put v usesdriver binaries.

If the driver for some reason wants to keep a driver binary around, for example in a static variable,
the reference count is to be incremented, and the binary can later be freed in the st op calback, with
driver_free_ binary.

Notice that as a driver binary is shared by the driver and the emulator. A binary received from the emulator or
sent to the emulator must not be changed by the driver.

Since ERTS5.5 (Erlang/OTP R11B), or i g_byt es isguaranteed to be properly aligned for storage of an array
of doubles (usually 8-byte aligned).

Er| DrvDat a

A handle to driver-specific data, passed to the driver callbacks. It is a pointer, and is most often type cast to a
specific pointer in the driver.

316 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

Sysl Ovec
A system 1/O vector, as used by wr i t ev on Unix and WSASend on Win32. Itisused in Er | | OVec.
Erll Ovec

typedef struct ErlIOVec {
int vsize;
ErlDrvSizeT size;
SysIOVec* iov;
ErlDrvBinary** binv;

} ErlIOVec;

The 1/0O vector used by the emulator and driversis alist of binaries, with a Sys| Ovec pointing to the buffers
of the binaries. It isused in dri ver _out put v and the out put v driver callback. Also, the driver queue is
anErl | Ovec.

Er | DrvMoni t or

When adriver creates amonitor for aprocess, aEr | Dr vivoni t or isfilled in. Thisis an opagque data type that
can be assigned to, but not compared without using the supplied comparefunction (that is, it behaveslikeastruct).

Thedriver writer isto provide the memory for storing the monitor whencalling dri ver _noni t or _process.
The address of the datais not stored outside of the driver, so Er | Dr vMoni t or can be used as any other data,
it can be copied, moved in memory, forgotten, and so on.

Er | Dr vNowDat a

The Er | Dr vNowDat a structure holds a time stamp consisting of three values measured from some arbitrary
point in the past. The three structure members are;

nmegasecs
The number of whole megaseconds elapsed since the arbitrary point in time
secs
The number of whole seconds elapsed since the arbitrary point in time
ni crosecs
The number of whole microseconds elapsed since the arbitrary point in time

Er | Dr vPDL

If certain port-specific data must be accessed from other threads than those calling the driver callbacks, a port
data lock can be used to synchronize the operations on the data. Currently, the only port-specific data that the
emulator associates with the port data lock is the driver queue.

Normally adriver instance has no port datalock. If the driver instance wants to use aport datalock, it must create
the port datalock by calling dri ver _pdl _create.

Once the port data lock has been created, every access to data associated with the port data lock must be done
while the port data lock is locked. The port datalock islocked and unlocked by dri ver pdl | ock, and
driver_pdl _unl ock, respectively.

A port data lock is reference counted, and when the reference count reaches zero, it is destroyed. The emulator
at least increments the reference count once when the lock is created and decrements it once the port associated
with the lock terminates. The emulator also increments the reference count when an async job is enqueued and
decrementsit when an async job has been invoked. Also, the driver is responsible for ensuring that the reference
count does not reach zero before the last use of the lock by the driver has been made. The reference count
can be read, incremented, and decremented by dri ver _pdl _get refc, driver_pdl __inc_refc,and
driver_pdl dec_r ef c, respectively.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 317

erl_driver

Erl DrvTid
Thread identifier.

See dso erl _drv_thread create, erl _drv_thread exit, erl_drv_thread join,
erl _drv_thread_self,and erl _drv_equal _tids.

Erl DrvThr eadOpt s

int suggested stack size;

Thread options structure passedto er| _drv_t hread_cr eat e. Thefollowing fields exists:

suggest ed_st ack_si ze
A suggestion, in kilowords, on how large a stack to use. A value < 0 means default size.

See aso erl _drv_thread _opts_create, erl _drv_thread _opts_destroy, and
erl _drv_thread_create.

Er | Dr vMut ex
Mutual exclusion lock. Used for synchronizing access to shared data. Only one thread at atime can lock amutex.

See dso erl _drv_mutex_create, erl_drv_nutex_destroy, erl_drv_nutex_|ock,
erl _drv_mutex_trylock,and erl _drv_nut ex_unl ock.

Er | DrvCond

Condition variable. Used when threads must wait for a specific condition to appear before continuing execution.
Condition variables must be used with associated mutexes.

See dso erl _drv_cond create, erl_drv_cond destroy, erl_drv_cond_signal,
erl _drv_cond_broadcast,and erl _drv_cond wait.

Er | Dr vRW.ock

Read/write lock. Used to allow multiple threads to read shared data while only allowing one thread to write the
same data. Multiple threads can read lock an rwlock at the same time, while only one thread can read/write lock
an rwlock at atime.

See also erl _drv_rw ock_create, erl_drv_rw ock_destroy, erl_drv_rw ock_rl ock,
erl _drv_rw ock_tryrl ock, erl _drv_rw ock_runl ock, erl _drv_rw ock_rw ock,
erl _drv_rwl ock_tryrw ock,and erl _drv_rw ock_rwunl ock.

Er | Dr vTSDKey
Key that thread-specific data can be associated with.

See also erl _drv_tsd key create, erl _drv_tsd key destroy, erl _drv_tsd set, and
erl _drv_tsd_get.

Erl DrvTi ne
A signed 64-hit integer type for time representation.
Erl DrvTi neUni t
An enumeration of time units supported by the driver API:

ERL_DRV_SEC
Seconds

ERL_DRV_MSEC
Milliseconds

ERL_DRV_USEC
Microseconds

318 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

ERL DRV _NSEC
Nanoseconds

Exports

void add driver entry(ErlDrvEntry *de)
Adds adriver entry to thelist of drivers known by Erlang. Thei ni t function of parameter de iscalled.

To usethisfunction for adding driversresiding in dynamically loaded code is dangerous. If the driver code for the
added driver resides in the same dynamically loaded module (that is, . so file) as a normal dynamically loaded
driver (loaded withtheer | _ddl | interface), thecalleristocal dri ver _| ock_dri ver beforeadding driver
entries.

Use of thisfunction isgenerally deprecated.

void *driver alloc(ErlDrvSizeT size)

Allocates a memory block of the size specified in si ze, and returns it. This fails only on out of memory, in which
case NULL isreturned. (Thisis most often awrapper for mal | oc).

Memory allocated must be explicitly freed with a corresponding call todr i ver _f r ee (unless otherwise stated).
Thisfunction is thread-safe.

ErlDrvBinary *driver alloc binary(ErlDrvSizeT size)

Allocates a driver binary with amemory block of at least si ze bytes, and returns a pointer to it, or NULL on failure
(out of memory). When adriver binary has been sent to the emulator, it must not be changed. Every allocated binary
isto be freed by a corresponding call to dri ver _free_bi nary (unless otherwise stated).

Notice that a driver binary has an internal reference counter. This means that calling dri ver _free_bi nary, it
may not actually dispose of it. If it is sent to the emulator, it can be referenced there.

Thedriver binary has afield, ori g_byt es, which marks the start of the datain the binary.
Thisfunction is thread-safe.

long driver async(ErlDrvPort port, unsigned int* key, void (*async invoke)
(void*), void* async data, void (*async free)(void*))

Performs an asynchronous call. The function async_i nvoke is invoked in a thread separate from the emulator
thread. This enables the driver to perform time-consuming, blocking operations without blocking the emulator.

The async thread pool size can be set with command-line argument +A in er| (1) . If an async thread pool is
unavailable, the cal is made synchronously in the thread calling dri ver _async. The current number of async
threads in the async thread pool can be retrieved through dri ver _system. i nf o.

If athread pool isavailable, athread isused. If argument key is NULL, the threads from the pool are used in around-
robin way, each call todri ver _async uses the next thread in the pool. With argument key set, this behavior is
changed. The two same values of * key aways get the same thread.

To ensure that a driver instance always uses the same thread, the following call can be used:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 319

erl_driver

unsigned int myKey = driver_async_port key(myPort);
r = driver_async(myPort, &myKey, myData, myFunc);

It is enough to initialize my Key once for each driver instance.

If athread is already working, the calls are queued up and executed in order. Using the same thread for each driver
instance ensures that the calls are made in sequence.

Theasync_dat a isthe argument to the functionsasync_i nvoke andasync_fr ee. Itistypicaly apointer to
a structure containing a pipe or event that can be used to signal that the async operation completed. The datais to
befreedinasync_free.

When the async operation isdone, r eady_async driver entry functioniscalled. If r eady_async isNULL inthe
driver entry, theasync_f r ee functionis called instead.

Thereturnvalueis- 1 if thedri ver _async cdl fails.

Note:

Asfrom ERTS5.5.4.3 the default stack size for threads in the async-thread pool is 16 kilowords, that is, 64 kilobyte
on 32-bit architectures. This small default size has been chosen because the amount of async-threads can be quite
large. The default stack sizeis enough for drivers delivered with Erlang/OTP, but is possibly not sufficiently large
for other dynamically linked-in drivers that use the dri ver _async functionality. A suggested stack size for
threads in the async-thread pool can be configured through command-line argument +a iner| (1) .

unsigned int driver async port key(ErlDrvPort port)

Calculates a key for later usein dri ver _async. The keys are evenly distributed so that a fair mapping between
port IDs and async thread IDs is achieved.

Note:

Before Erlang/OTP R16, the port ID could be used as a key with proper casting, but after the rewrite of the port
subsystem, this is no longer the case. With this function, you can achieve the same distribution based on port IDs
as before Erlang/OTP R16.

long driver binary dec _refc(ErlDrvBinary *bin)
Decrements the reference count on bi n and returns the reference count reached after the decrement.

This function is thread-safe.

Note:

The reference count of driver binary is normally to be decremented by calling dri ver _free_bi nary.

driver_bi nary_dec_refc does not free the binary if the reference count reaches zero. Only use
driver_bi nary_dec_r ef c whenyou are sure not to reach areference count of zero.

long driver binary get refc(ErlDrvBinary *bin)
Returns the current reference count on bi n.
Thisfunction is thread-safe.

320 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

long driver binary inc refc(ErlDrvBinary *bin)
Increments the reference count on bi n and returns the reference count reached after the increment.
This function is thread-safe.

ErlDrvTermData driver caller(ErlDrvPort port)

Returns the process ID of the process that made the current call to the driver. The process ID can be used with
driver_send_t er mto send back data to the caller. dri ver _cal | er only returns valid data when currently
executing in one of the following driver callbacks:

start

Called from er | ang: open_port/ 2.
out put

Called from er | ang: send/ 2 and er| ang: port _command/ 2.
out put v

Called from er | ang: send/ 2 and er| ang: port _command/ 2.
control

Called from er | ang: port _control /3.
cal |

Called from er | ang: port _cal |/ 3.

Notice that this function is not thread-safe, not even when the emulator with SMP support is used.

int driver cancel timer(ErlDrvPort port)
Cancelsatimer set with dri ver _set _ti ner.

The return valueis 0.

int driver compare monitors(const ErlDrvMonitor *monitorl, const
ErlDrvMonitor *monitor2)

Comparestwo Er | Dr vibni t or s. Can aso be used to imply some artificial order on monitors, for whatever reason.

Returns O if moni t or 1 and nonitor 2 are equal, < 0 if nobnitorl <nonitor2,and >0 if ronitorl >
noni t or 2.

ErlDrvTermData driver connected(ErlDrvPort port)
Returns the port owner process.
Notice that thisfunction is not thread-safe, not even when the emulator with SMP support is used.

ErlDrvPort driver create port(ErlDrvPort port, ErlDrvTermData owner pid,
char* name, ErlDrvData drv_data)

Creates a new port executing the same driver code as the port creating the new port.

port
The port handle of the port (driver instance) creating the new port.

owner _pid
The process ID of the Erlang process to become owner of the new port. This process will be linked to the new
port. You usually wanttousedri ver _cal | er (port) asowner _pi d.

name
The port name of the new port. Y ou usually want to use the same port name as the driver name (
driver_nane fieldof thedri ver _entry).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 321

erl_driver

drv_data
The driver-defined handle that is passed in later callsto driver callbacks. Notice that the driver start callback
isnot called for this new driver instance. The driver-defined handleis normally created in the driver start
callback when aport is created through er | ang: open_port/ 2.

The caler of driver_create_port is alowed to manipulate the newly created port when
driver_create_port has returned. When port level locking is used, the creating port is only alowed to
mani pulate the newly created port until the current driver callback, which was called by the emulator, returns.

int driver demonitor process(ErlDrvPort port, const ErlDrvMonitor *monitor)
Cancels amonitor created earlier.
Returns 0 if amonitor was removed and > 0 if the monitor no longer exists.

ErlDrvSizeT driver deq(ErlDrvPort port, ErlDrvSizeT size)

Dequeues data by moving the head pointer forward in the driver queue by si ze bytes. The data in the queue is
deallocated.

Returns the number of bytes remaining in the queue on success, otherwise - 1.

This function can be caled from any thread if a port data lock associated with the port islocked by the caling
thread during the call.

int driver _enq(ErlDrvPort port, char* buf, ErlDrvSizeT len)

Enqueues data in the driver queue. The datain buf iscopied (I en bytes) and placed at the end of the driver queue.
The driver queueis normally used in a FIFO way.

The driver queue is available to queue output from the emulator to the driver (data from the driver to the emulator is
gueued by the emulator in normal Erlang message queues). This can be useful if the driver must wait for slow devices,
and so on, and wantsto yield back to the emulator. The driver queueisimplemented asan Er | | Ovec.

When the queue contains data, the driver does not close until the queue is empty.
ThereturnvalueisO.

This function can be called from any thread if a port data lock associated with the port is locked by the caling
thread during the call.

int driver enq bin(ErlDrvPort port, ErlDrvBinary *bin, ErlDrvSizeT offset,
ErlDrvSizeT len)

Engueues adriver binary in the driver queue. The datain bi n at of f set with length| en is placed at the end of the
gueue. Thisfunction is most often faster than dr i ver _enq, because no data must be copied.

This function can be caled from any thread if a port data lock associated with the port is locked by the caling
thread during the call.

Thereturn valueisO.

int driver enqv(ErlDrvPort port, ErlIOVec *ev, ErlDrvSizeT skip)

Enqgueues the data in ev, skipping the first ski p bytes of it, a the end of the driver queue. It is faster than
dri ver _enq, because no data must be copied.

Thereturn valueis 0.

This function can be called from any thread if a port data lock associated with the port is locked by the caling
thread during the call.

322 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

int driver failure(ErlDrvPort port, int error)
int driver failure atom(ErlDrvPort port, char *string)
int driver failure posix(ErlDrvPort port, int error)

Signalsto Erlang that thedriver hasencountered an error and isto beclosed. Theportisclosed andthetuple{' EXI T',
error, Err} issentto the port owner process, where error is an error atom (dri ver _f ai |l ure_at omand
driver_failure_posix)oraninteger (dri ver_fail ure).

Thedriver istofail only whenin severeerror situations, when the driver cannot possibly keep open, for example, buffer
allocation gets out of memory. For normal errorsit is more appropriate to send error codeswith dri ver _out put .

Thereturn valueisO.

int driver failure eof(ErlDrvPort port)

Signals to Erlang that the driver has encountered an EOF and is to be closed, unless the port was opened with option
eof , in which case eof is sent to the port. Otherwise the port is closed and an* EXI T' message is sent to the port
OWNer process.

Thereturn valueisO.

void driver free(void *ptr)

Frees the memory pointed to by pt r . The memory is to have been allocated with dri ver _al | oc. All alocated
memory isto be deallocated, only once. Thereis no garbage collection in drivers.

This function is thread-safe.

void driver free binary(ErlDrvBinary *bin)

Freesadriver binary bi n, allocated previously with dri ver _al | oc_bi nary. Asbinariesin Erlang are reference
counted, the binary can still be around.

This function is thread-safe.

ErlDrvTermData driver get monitored process(ErlDrvPort port, const
ErlDrvMonitor *monitor)

Returns the process ID associated with a living monitor. It can be used inthe process_exi t callback to get the
process identification for the exiting process.

Returnsdri ver _t er m ni | if the monitor no longer exists.

int driver get now(ErlDrvNowData *now)

Thisfunction isdeprecated. Do not useit. Use er| _drv_nonot oni c_t i ne (perhapsin combination with
erl _drv_time_of fset)instead.

Reads a time stamp into the memory pointed to by parameter now. For information about specific fields, see
Er | Dr vNowDat a.

Thereturn valueis 0, unless the now pointer isinvalid, in which caseit is< 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 323

erl_driver

int driver lock driver(ErlDrvPort port)

Locks the driver used by the port por t in memory for the rest of the emulator process lifetime. After this call, the
driver behaves as one of Erlang's statically linked-in drivers.

ErlDrvTermData driver mk atom(char* string)

Returns an atom given aname st r i ng. The atom is created and does not change, so the return value can be saved
and reused, which is faster than looking up the atom several times.

Notice that this function is not thread-safe, not even when the emulator with SMP support is used.

ErlDrvTermData driver mk port(ErlDrvPort port)

Converts a port handle to the Erlang term format, usable in erl _drv_output_term and
erl _drv_send_term

Notice that thisfunction is not thread-safe, not even when the emulator with SMP support is used.

int driver _monitor process(ErlDrvPort port, ErlDrvTermData process,
ErlDrvMonitor *monitor)

Starts monitoring a process from adriver. When a process is monitored, a process exit resultsin acall to the provided
process_exit calback inthe Erl Dr vEnt ry structure. The Er | Dr viVbni t or structure is filled in, for later
removal or compare.

Parameter pr ocess isto bethereturn value of an earlier call to dri ver _cal | er ordri ver _connect ed call.
Returns O on success, < 0 if no callback is provided, and > 0O if the processis no longer alive.

int driver output(ErlDrvPort port, char *buf, ErlDrvSizeT len)

Sends data from the driver up to the emulator. The data is received as terms or binary data, depending on how the
driver port was opened.

The data is queued in the port owner process message queue. Notice that this does not yield to the emulator (as the
driver and the emulator run in the same thread).

Parameter buf pointsto the datato send, and | en isthe number of bytes.

Thereturn value for al output functionsis O for normal use. If the driver isused for distribution, it can fail and return
-1.

int driver output binary(ErlDrvPort port, char *hbuf, ErlDrvSizeT hlen,
ErlDrvBinary* bin, ErlDrvSizeT offset, ErlDrvSizeT len)

Sends data to a port owner process from a driver binary. It has a header buffer (hbuf and hl en) just like
dri ver _out put 2. Parameter hbuf can be NULL.

Parameter of f set isan offset into the binary and | en isthe number of bytes to send.
Driver binaries are created with dri ver _al | oc_bi nary.

The datain the header is sent as alist and the binary as an Erlang binary in thetail of the list.
For example, if hl en is 2, the port owner processreceives| HL, H2 | <<T>>].
Thereturn valueis O for normal use.

Noticethat, using the binary syntax in Erlang, the driver application can match the header directly from the binary, so
the header can be put in the binary, and hl en can be set to 0.

324 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

int driver output term(ErlDrvPort port, ErlDrvTermData* term, int n)

| Thisfunction isdeprecated. Use er | _drv_out put _t er minstead. |

Parameterst er mand n work asin er| _drv_out put _term
Notice that thisfunction is not thread-safe, not even when the emulator with SMP support is used.

int driver output2(ErlDrvPort port, char *hbuf, ErlDrvSizeT hlen, char *buf,
ErlDrvSizeT len)

First sends hbuf (lengthin hl en) dataas alist, regardless of port settings. Then sends buf as abinary or list. For
example, if hl en is 3, the port owner processreceives[HL, H2, H3 | T].

The point of sending data as alist header, isto facilitate matching on the data received.

Thereturn valueis 0 for normal use.

int driver outputv(ErlDrvPort port, char* hbuf, ErlDrvSizeT hlen, ErlIQVec
*ev, ErlDrvSizeT skip)

Sends data from an 1/0O vector, ev, to the port owner process. It has a header buffer (hbuf and hl en), just like
driver _out put 2.

Parameter ski p isanumber of bytesto skip of the ev vector from the head.

You get vectors of Er | | OVec type from the driver queue (see below), and the out put v driver entry function. You
can also make them yourself, if you want to send several Er | Dr vBi nary buffers at once. Often it is faster to use
driver _out put or.

For example, if hl en is2 and ev pointsto an array of three binaries, the port owner process receives [HL, H2,
<<Bl>>, <<B2>> | <<B3>>].

The return value is O for normal use.
The comment for dr i ver _out put _bi nary also appliesfordri ver _out put v.

ErlDrvPDL driver pdl create(ErlDrvPort port)
Creates a port data lock associated with the por t .

Once a port data lock has been created, it must be locked during all operations on the driver queue of the por t .

Returns a newly created port data lock on success, otherwise NULL. The function failsif port isinvalid or if a port
datalock already has been associated with the por t .

long driver pdl dec refc(ErlDrvPDL pdl)

Decrements the reference count of the port datalock passed as argument (pdl).
The current reference count after the decrement has been performed is returned.
Thisfunction is thread-safe.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 325

erl_driver

long driver pdl get refc(ErlDrvPDL pdl)
Returns the current reference count of the port data lock passed as argument (pdl).
Thisfunction is thread-safe.

long driver pdl inc_refc(ErlDrvPDL pdl)

Increments the reference count of the port data lock passed as argument (pdl).
The current reference count after the increment has been performed is returned.
Thisfunction is thread-safe.

void driver pdl lock(ErlDrvPDL pdl)
Locks the port data lock passed as argument (pdl).
This function is thread-safe.

void driver pdl unlock(ErlDrvPDL pdl)
Unlocks the port data lock passed as argument (pdl).
Thisfunction is thread-safe.

SysIOVec *driver peekq(ErlDrvPort port, int *vlen)

Retrieves the driver queue as a pointer to an array of Sys| OVecs. It aso returns the number of elementsin vl en.
Thisisone of two waysto get data out of the queue.

Nothing is removed from the queue by this function, that must be done with dr i ver _deq.
The returned array is suitable to use with the Unix systemcall wri t ev.

This function can be caled from any thread if a port data lock associated with the port is locked by the caling
thread during the call.

ErlDrvSizeT driver peekqv(ErlDrvPort port, ErlIOVec *ev)

Retrieves the driver queue into a supplied Er | | OVec ev. It aso returns the queue size. Thisis one of two waysto
get data out of the queue.

If ev isNULL, all onesthatis- 1 typecastto Er| DrvSi zeT are returned.
Nothing is removed from the queue by this function, that must be done with dr i ver _deq.

This function can be called from any thread if a port data lock associated with the port is locked by the caling
thread during the call.

int driver pushq(ErlDrvPort port, char* buf, ErlDrvSizeT len)

Puts data at the head of the driver queue. The datain buf is copied (I en bytes) and placed at the beginning of the
queue.

Thereturn valueis 0.

This function can be called from any thread if a port data lock associated with the port is locked by the caling
thread during the call.

326 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

int driver pushq bin(ErlDrvPort port, ErlDrvBinary *bin, ErlDrvSizeT offset,
ErlDrvSizeT len)

Puts datain the binary bi n, at of f set with length | en at the head of the driver queue. It is most often faster than
dri ver _pushq, because no data must be copied.

This function can be called from any thread if a port data lock associated with the port is locked by the caling
thread during the call.

Thereturn valueisO.

int driver pushqv(ErlDrvPort port, ErlIOVec *ev, ErlDrvSizeT skip)

Putsthedatainev, skippingthefirst ski p bytesof it, at the head of thedriver queue. Itisfaster thandr i ver _pushq,
because no data must be copied.

Thereturn valueisO.

This function can be caled from any thread if a port data lock associated with the port islocked by the caling
thread during the call.

int driver read timer(ErlDrvPort port, unsigned long *time left)

Reads the current time of atimer, and placestheresultint i ne_I ef t . Thisisthe time in milliseconds, before the
time-out occurs.

Thereturn valueisO.

void *driver realloc(void *ptr, ErlDrvSizeT size)

Resizes a memory block, either in place, or by allocating a new block, copying the data, and freeing the old block.
A pointer is returned to the reallocated memory. On failure (out of memory), NULL is returned. (Thisis most often
awrapper forr eal | oc.)

This function is thread-safe.

ErlDrvBinary *driver realloc binary(ErlDrvBinary *bin, ErlDrvSizeT size)
Resizes adriver binary, while keeping the data.

Returns the resized driver binary on success. Returns NULL on failure (out of memory).

This function is thread-safe.

int driver select(ErlDrvPort port, ErlDrvEvent event, int mode, int on)

Thisfunction isused by driversto provide the emulator with events to check for. This enables the emulator to call the
driver when something has occurred asynchronously.

Parameter event identifies an OS-specific event object. On Unix systems, the functions sel ect /pol | are used.
The event object must be a socket or pipe (or other object that sel ect /pol | can use). On Windows, the Win32 API
function Wai t For Mul ti pl eQbj ect s is used. This places other restrictions on the event object; see the Win32
SDK documentation.

Parameter on isto be 1 for setting events and O for clearing them.

Parameter node is a bitwise OR combination of ERL_DRV_READ, ERL_DRV_WRI TE, and ERL_DRV_USE. The
first two specify whether to wait for read events and/or write events. A fired read event calls r eady_i nput and a
fired write event calls r eady_out put .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 327

erl_driver

Some OS (Windows) do not differentiate between read and write events. The callback for afired event then only
depends on the value of node.

ERL_DRV_USE specifiesif weare using the event object or if wewant to closeit. On an emulator with SM P support, it
isnot safeto clear all events and then close the event object after dr i ver _sel ect hasreturned. Another thread can
still be using the event object internally. To safely close an event object, call dr i ver _sel ect withERL_DRV_USE
and on==0, which clears all events and then either callsst op_sel ect or schedulesit to be called when it is safe
to close the event object. ERL_DRV_USE is to be set together with the first event for an event object. It is harmless
toset ERL_DRV_USE even if it already has been done. Clearing all events but keeping ERL_ DRV _USE set indicates
that we are using the event object and probably will set eventsfor it again.

Note:

ERL_DRV_USE was added in Erlang/OTP R13. Old drivers still work as before, but it is recommended to update
themtouse ERL_DRV_USE and st op_sel ect to ensure that event objects are closed in a safe way.

Thereturn valueis 0, unlessr eady i nput /r eady_out put isNULL, inwhich caseitis- 1.

int driver_send term(ErlDrvPort port, ErlDrvTermData receiver,
ErlDrvTermData* term, int n)

Warning:

Thisfunction isdeprecated. Use er| _drv_send_t er minstead.

Note:

The parameters of this function cannot be properly checked by the runtime system when executed by arbitrary
threads. This can cause the function not to fail when it should.

Parameterst er mand n work asin er| _drv_out put _term
This function is only thread-safe when the emulator with SMP support is used.

int driver set timer(ErlDrvPort port, unsigned long time)

Sets atimer on the driver, which will count down and call the driver when it istimed out. Parameter t i ne isthetime
in milliseconds before the timer expires.

When the timer reaches 0 and expires, the driver entry function t i meout iscalled.
Notice that only one timer exists on each driver instance; setting a new timer replaces an older one.
Return valueis 0, unlessthet i meout driver functionisNULL, in which caseitis- 1.

ErlDrvSizeT driver sizeq(ErlDrvPort port)
Returns the number of bytes currently in the driver queue.

This function can be called from any thread if a port data lock associated with the port is locked by the calling
thread during the call.

328 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

void driver system info(ErlDrvSysInfo *sys info ptr, size t size)

Writes information about the Erlang runtime system into the Erl| DrvSysl nf o structure referred to by
the first argument. The second argument is to be the size of the Erl DrvSysl nfo structure, that is,
si zeof (Erl DrvSysl nf 0).

For information about specific fields, see Er | Dr vSys| nf o.

ErlDrvSizeT driver vec to buf(ErlIOVec *ev, char *buf, ErlDrvSizeT len)
Collects several segments of data, referenced by ev, by copying them in order to the buffer buf , of the sizel en.
If the datais to be sent from the driver to the port owner process, it isfaster tousedr i ver _out put v.

The return value is the space left in the buffer, that is, if ev contains less than | en bytes it is the difference, and if
ev contains| en bytes or more, it is0. Thisis faster if there is more than one header byte, as the binary syntax can
construct integers directly from the binary.

void erl drv busy msgq limits(ErlDrvPort port, ErlDrvSizeT *low, ErlDrvSizeT
*high)

Sets and gets limits that will be used for controlling the busy state of the port message queue.

The port message queue is set into a busy state when the amount of command data queued on the message queue
reachesthe hi gh limit. The port message queueis set into anot busy state when the amount of command data queued
on the message queue falls below the | owlimit. Command datais in this context data passed to the port using either
Port ! {Oaner, {command, Data}} orport_conmand/[2, 3] . Notice that these limits only concerns
command data that have not yet reached the port. The busy port feature can be used for data that has reached the port.

Validlimitsare valuesintherange[ERL_DRV_BUSY_MSGQ LI M M N, ERL_DRV_BUSY_MSGQ LI M MAX] .
Limits are automatically adjusted to be sane. That is, the system adjusts values so that the low limit used is lower than
or equal to the high limit used. By default the high limit is 8 kB and the low limit is4 kB.

By passing apointer to aninteger variable containing thevalue ERL_DRV_BUSY_ MSGQ READ ONLY, the currently
used limit is read and written back to the integer variable. A new limit can be set by passing a pointer to an integer
variable containing avalid limit. The passed value is written to the internal limit. The internal limit is then adjusted.
After this the adjusted limit is written back to the integer variable from which the new value was read. Values are
in bytes.

The busy message queue feature can be disabled either by settingthe ERL_DRV_FLAG _NO BUSY_MSGQdriver flag
inthedri ver _ent ry used by thedriver, or by calling this function with ERL_DRV_BUSY_MSGQ DI SABLED as
alimit (either low or high). When this feature has been disabled, it cannot be enabled again. When reading the limits,
both are ERL_DRV_BUSY_MSGQ DI SABLED if this feature has been disabled.

Processes sending command data to the port are suspended if either the port is busy or if the port message queue is
busy. Suspended processes are resumed when neither the port or the port message queue is busy.

For information about busy port functionality, sceset _busy_port.

void erl drv_cond broadcast(ErlDrvCond *cnd)

Broadcasts on a condition variable. That is, if other threads are waiting on the condition variable being broadcast on,
all of them are woken.

cnd isapointer to a condition variable to broadcast on.
This function is thread-safe.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 329

erl_driver

ErlDrvCond *erl drv _cond create(char *name)
Creates a condition variable and returns a pointer to it.

nane is a string identifying the created condition variable. It is used to identify the condition variable in planned
future debug functionality.

Returns NULL on failure. The driver creating the condition variable is responsible for destroying it before the driver
is unloaded.

Thisfunction is thread-safe.

void erl drv_cond destroy(ErlDrvCond *cnd)
Destroys a condition variable previously created by er| _drv_cond_create.
cnd isapointer to a condition variable to destroy.

This function is thread-safe.

char *erl drv_cond name(ErlDrvCond *cnd)
Returns a pointer to the name of the condition.
cnd isapointer to aninitialized condition.

| This function isintended for debugging purposes only. |

void erl drv_cond_signal(ErlDrvCond *cnd)

Signals on a condition variable. That is, if other threads are waiting on the condition variable being signaled, one of
them is woken.

cnd isapointer to a condition variable to signal on.
This function is thread-safe.

void erl drv _cond wait(ErlDrvCond *cnd, ErlDrvMutex *mtx)

Waits on acondition variable. The calling thread is blocked until another thread wakesit by signaling or broadcasting
on the condition variable. Before the calling thread is blocked, it unlocks the mutex passed as argument. When the
calling thread is woken, it locks the same mutex before returning. That is, the mutex currently must be locked by the
calling thread when calling this function.

cnd isapointer to a condition variable to wait on. nt x isapointer to amutex to unlock while waiting.

erl _drv_cond_wai t canreturnevenif noonehassignaed or broadcast on the condition variable. Code calling
erl _drv_cond_wai t isalwaystobepreparedforer| _drv_cond_wai t returning evenif the condition that
the thread was waiting for has not occurred. That is, when returning fromer | _drv_cond_wai t , always check
if the condition has occurred, and if not call er | _drv_cond_wai t again.

This function is thread-safe.

330 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

int erl _drv_consume_timeslice(ErlDrvPort port, int percent)

Gives the runtime system a hint about how much CPU time the current driver callback call has consumed since the
last hint, or since the the start of the callback if no previous hint has been given.

port
Port handle of the executing port.
per cent
Approximate consumed fraction of afull time-slice in percent.

Thetimeisspecified asafraction, in percent, of afull time-slicethat aport isallowed to execute beforeit isto surrender
the CPU to other runnable ports or processes. Validrangeis[1, 100] . The scheduling time-sice is not an exact
entity, but can usually be approximated to about 1 millisecond.

Notice that it is up to the runtime system to determine if and how to use this information. Implementations on some
platforms can use other means to determine the consumed fraction of the time-slice. Lengthy driver callbacks should,
regardless of this, frequently call this function to determineif it is allowed to continue execution or not.

This function returns a non-zero value if the time-dlice has been exhausted, and zero if the callback is allowed to
continue execution. If a non-zero value is returned, the driver callback is to return as soon as possible in order for
the port to be able to yield.

This function is provided to better support co-operative scheduling, improve system responsiveness, and to make it
easier to prevent misbehaviors of the VM because of a port monopolizing a scheduler thread. It can be used when
dividing lengthy work into some repeated driver callback calls, without the need to use threads.

See also the important warning text at the beginning of this manual page.

ErlDrvTime erl drv convert time unit(ErlDrvTime val, ErlDrvTimeUnit from,
ErlDrvTimeUnit to)

Converts the val value of time unit f r omto the corresponding value of time unit t 0. The result is rounded using
the floor function.

val

Value to convert time unit for.
from

Timeunit of val .
to

Time unit of returned value.

Returns ERL_DRV_TI ME_ERRORf called with an invalid time unit argument.
Seealso Er I DrvTine and Erl DrvTi meUnit.

int erl drv equal tids(ErlDrvTid tidl, ErlDrvTid tid2)
Compares two thread identifiers, t i d1 andt i d2, for equality.
Returns O it they are not equal, and a value not equal to O if they are equal.

A thread identifier can be reused very quickly after a thread has terminated. Therefore, if athread corresponding
to one of the involved thread identifiers has terminated since the thread identifier was saved, the result of
erl _drv_equal _ti ds doespossibly not give the expected result.

Thisfunction is thread-safe.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 331

erl_driver

int erl drv getenv(const char *key, char *value, size t *value size)
Retrieves the value of an environment variable.

key
A NULL-terminated string containing the name of the environment variable.
val ue
A pointer to an output buffer.
val ue_si ze
A pointer to an integer. The integer is used both for passing input and output sizes (see below).

When thisfunctioniscalled, * val ue_si ze isto contain the size of theval ue buffer.

On success, 0 is returned, the value of the environment variable has been written to the val ue buffer, and
*val ue_si ze contains the string length (excluding the terminating NULL character) of the value written to the
val ue buffer.

On failure, that is, no such environment variable was found, a value < 0 is returned. When the size of the val ue
buffer istoo small, avalue > 0 isreturned and * val ue_si ze has been set to the buffer size needed.

Do not uselibc'sget env or similar C library interfaces from adriver. ‘

This function is thread-safe.

void erl drv init ack(ErlDrvPort port, ErlDrvData res)
Acknowledges the start of the port.

port
The port handle of the port (driver instance) doing the acknowledgment.

res
The result of the port initialization. Can be the same values as the return value of st ar t , that is, any of the
error codes or the Er | Dr vDat a that isto be used for this port.

When this function is called the initiating er | ang: open_port cal isreturned asif the st art function had just
been called. It can only be used when flag ERL_DRV_FLAG _USE_| NI T_ACK has been set on the linked-in driver.

ErlDrvTime erl drv_monotonic time(ErlDrvTimeUnit time unit)
Returns Erlang monotonic time. Notice that negative values are not uncommon.
ti me_unit istime unit of returned value.

Returns ERL_DRV_TI ME_ERRORIf called with an invalid time unit argument, or if called from athread that is not
a scheduler thread.

SeeasoEr |l DrvTine and Er |l DrvTi meUni t.

ErlDrvMutex *erl drv_mutex create(char *name)

Creates amutex and returns a pointer to it.

name isastring identifying the created mutex. It is used to identify the mutex in planned future debug functionality.
Returns NULL on failure. The driver creating the mutex is responsible for destroying it before the driver is unloaded.
Thisfunction is thread-safe.

332 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

void erl drv_mutex destroy(ErlDrvMutex *mtx)

Destroysamutex previously created by er | _dr v_nut ex_cr eat e. Themutex must bein an unlocked state before
it is destroyed.

nt x isapointer to a mutex to destroy.
This function is thread-safe.

void erl drv_mutex lock(ErlDrvMutex *mtx)

Locks a mutex. The calling thread is blocked until the mutex has been locked. A thread that has currently locked the
mutex cannot lock the same mutex again.

nt x isapointer to a mutex to lock.

If you leave amutex locked in an emulator thread when you let the thread out of your control, you will very likely
deadlock the whole emulator.

This function is thread-safe.

char *erl drv_mutex name(ErlDrvMutex *mtx)
Returns a pointer to the mutex name.
nt X isapointer to an initialized mutex.

This function is intended for debugging purposes only.

int erl drv_mutex trylock(ErlDrvMutex *mtx)

Triesto lock amutex. A thread that has currently locked the mutex cannot try to lock the same mutex again.
nt X isapointer to amutex to try to lock.

Returns O on success, otherwise EBUSY.

If you leave a mutex locked in an emulator thread when you let the thread out of your control, you will very likely
deadlock the whole emulator.

This function is thread-safe.

void erl _drv_mutex unlock(ErlDrvMutex *mtx)

Unlocks amutex. The mutex currently must be locked by the calling thread.
nt x isapointer to a mutex to unlock.

Thisfunction is thread-safe.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 333

erl_driver

int erl drv output term(ErlDrvTermData port, ErlDrvTermData* term, int n)

Sends data in the special driver term format to the port owner process. This is a fast way to deliver term data
from a driver. It needs no binary conversion, so the port owner process receives data as normal Erlang terms. The
erl _drv_send_t er mfunctions can be used for sending to any process on the local node.

‘ Parameter por t isnot an ordinary port handle, but a port handle converted using dri ver _nk_port.

Parameter t er mpointsto an array of Er | Dr vTer nDat a with n elements. Thisarray containstermsdescribed inthe
driver term format. Every term consists of 1-4 elementsin the array. Thefirst term has aterm type and then arguments.
Parameter por t specifies the sending port.

Tuples, maps, and lists (except strings, see below) are built in reverse polish notation, so that to build a tuple, the
elements are specified first, and then the tuple term, with a count. Likewise for lists and maps.
* A tuple must be specified with the number of elements. (The elements precede the ERL_DRV_TUPLE term.)

e A map must be specified with the number of key-value pairs N. The key-value pairs must precede the
ERL_DRV_MAPinthisorder: key1, val uel, key2, val ue2, .. ., keyN, val ueN. Duplicate keys are not
allowed.

e A list must be specified with the number of elements, including the tail, which is the last term preceding
ERL_DRV_LI ST.

The special term ERL_DRV_STRI NG_CONS is used to "splice” in astring in alist, a string specified thisway is not
alistinitsalf, but the elements are elements of the surrounding list.

Term type Arguments

ERL_DRV_NIL

ERL DRV_ATOM ErlDrvTermData atom (from driver mk atom(char *string))
ERL DRV _INT ErlDrvSInt integer

ERL DRV _UINT ErlDrvUInt integer

ERL DRV _INT64 ErlDrvSInt64 *integer ptr

ERL DRV _UINT64 ErlDrvUInt64 *integer ptr

ERL DRV _PORT ErlDrvTermData port (from driver mk port(ErlDrvPort port))
ERL DRV _BINARY ErlDrvBinary *bin, ErlDrvUInt len, ErlDrvUInt offset
ERL_DRV_BUF2BINARY char *buf, ErlDrvUInt len

ERL DRV_STRING char *str, int len

ERL_DRV_TUPLE int sz

ERL_DRV_LIST int sz

ERL DRV _PID ErlDrvTermData pid (from driver connected(ErlDrvPort port)

or driver caller(ErlDrvPort port))
ERL DRV_STRING CONS char *str, int len

ERL_DRV_FLOAT double *dbl
ERL DRV _EXT2TERM char *buf, ErlDrvUInt len
ERL_DRV_MAP int sz

The unsigned integer data type Er | Dr vUI nt and the signed integer datatype Er | Dr vSI nt are 64 bitswide on a
64-bit runtime system and 32 bits wide on a 32-hit runtime system. They were introduced in ERTS 5.6 and replaced
some of thei nt argumentsin the list above.

The unsigned integer data type Er | Dr vUI nt 64 and the signed integer data type Er | Dr vSI nt 64 are always 64
bits wide. They were introduced in ERTS 5.7.4.

Tobuildthetuple{tcp, Port, [100 | Bi nary]},thefollowing call can be made.

334 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

ErlDrvBinary* bin = ...
ErlDrvPort port = ...
ErlDrvTermData spec[] = {
ERL DRV _ATOM, driver mk atom("tcp"),
ERL DRV _PORT, driver mk port(drvport),
ERL DRV _INT, 100,
ERL DRV _BINARY, bin, 50, 0,
ERL DRV LIST, 2,
ERL DRV_TUPLE, 3,
}i

erl drv_output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

Herebi nisadriver binary of length at least 50 and dr vpor t isaport handle. Noticethat ERL_DRV_LI ST comes
after the elements of thelist, likewise ERL_DRV_TUPLE.

TheERL_DRV_STRI NG_CONS termisaway to construct strings. It worksdifferently fromhow ERL_DRV_STRI NG
works. ERL_DRV_STRI NG_CONS buildsastring list in reverse order (as opposed to how ERL_DRV_LI ST works),
concatenating the strings added to alist. The tail must be specified before ERL_DRV_STRI NG_CONS.

ERL_DRV_STRI NG constructs a string, and ends it. (So it is the same as ERL_DRV_NI L followed by
ERL_DRV_STRI NG_CONS.)

/* to send [x, "abc", y] to the port: */
ErlDrvTermData spec[] = {
ERL DRV _ATOM, driver mk atom("x"),
ERL DRV _STRING, (ErlDrvTermData)'"abc", 3,
ERL DRV _ATOM, driver mk atom("y"),
ERL DRV_NIL,
ERL DRV _LIST, 4
+

erl drv_output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

/* to send "abcl123" to the port: */

ErlDrvTermData spec[] = {
ERL DRV_NIL, /* with STRING CONS, the tail comes first */
ERL DRV _STRING CONS, (ErlDrvTermData)"123", 3,
ERL DRV_STRING CONS, (ErlDrvTermData)"abc", 3,

+i

erl drv_output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

The ERL_DRV_EXT2TERMterm typeis used for passing aterm encoded with the external format, that is, aterm that
hasbeen encoded by er| ang: term to_bi nary,erl _i nterface: ei (3),andsoon. For example, if bi np
isapointer toan Er | Dr vBi nary that containsterm {17, 4711} encoded with the external format, and you want
towrap it in atwo-tuplewith thetag ny_t ag, thatis, {ny_tag, {17, 4711}},youcando asfollows:

ErlDrvTermData spec[] = {
ERL DRV_ATOM, driver mk atom("my tag"),
ERL DRV _EXT2TERM, (ErlDrvTermData) binp->orig bytes, binp->orig size
ERL DRV _TUPLE, 2,
}i

erl drv_output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

Tobuildthemap #{ keyl => 100, key2 => {200, 300}}, thefollowing call can be made.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 335

erl_driver

ErlDrvPort port = ...
ErlDrvTermData spec[] = {
ERL DRV _ATOM, driver mk atom("keyl"),
ERL DRV_INT, 100,
ERL DRV _ATOM, driver mk _atom("key2"),
ERL DRV_INT, 200,
ERL DRV_INT, 300,
ERL DRV _TUPLE, 2,
ERL DRV_MAP, 2
};

erl drv_output term(driver mk port(drvport), spec, sizeof(spec) / sizeof(spec[0]));

If you want to pass a binary and do not already have the content of the binary inan Er | Dr vBi nar y, you can benefit
fromusing ERL_DRV_BUF2BI NARY instead of creating an Er | Dr vBi nar y through dri ver _al |l oc_bi nary
and then pass the binary through ERL_DRV_BI NARY. The runtime system often allocates binaries smarter
if ERL_DRV_BUF2BI NARY is used. However, if the content of the binary to pass aready resides in an
Erl DrvBi nary, it is normally better to pass the binary using ERL_DRV_BI NARY and the Er | Dr vBi nary in
question.

The ERL_DRV_UI NT, ERL_DRV_BUF2BI NARY, and ERL_DRV_EXT2TERMterm types wereintroduced in ERTS
5.6.

This function is only thread-safe when the emulator with SMP support is used.

int erl drv_putenv(const char *key, char *value)

Sets the value of an environment variable.

key isaNULL-terminated string containing the name of the environment variable.

val ue isaNULL-terminated string containing the new value of the environment variable.
Returns O on success, otherwise avalue! = 0.

The result of passing the empty string (" ") asavaueis platform-dependent. On some platformsthe variable value
is set to the empty string, on others the environment variable is removed.

Do not uselibc's put env or similar C library interfaces from a driver.

This function is thread-safe.

ErlDrvRWLock *erl drv_rwlock create(char *name)

Creates an rwlock and returns a pointer to it.

nane isastring identifying the created rwlock. It is used to identify the rwlock in planned future debug functionality.
Returns NULL on failure. The driver creating the rwlock is responsible for destroying it before the driver is unloaded.
This function is thread-safe.

void erl drv_rwlock destroy(ErlDrvRWLock *rwlck)

Destroys an rwlock previously created by er| _drv_rw ock_cr eat e. The rwlock must be in an unlocked state
before it is destroyed.

336 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

rw ck isapointer to an rwlock to destroy.
Thisfunction is thread-safe.

char *erl drv_rwlock name(ErlDrvRWLock *rwlck)
Returns a pointer to the name of the rwlock.
rw ck isapointer to an initialized rwlock.

Thisfunction is intended for debugging purposes only. |

void erl drv rwlock rlock(ErlDrvRWLock *rwlck)

Read locks an rwlock. The calling thread is blocked until the rwlock has been read locked. A thread that currently has
read or read/write locked the rwlock cannot lock the same rwlock again.

rw ck isapointer to the rwlock to read lock.

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

Thisfunction is thread-safe.

void erl drv_rwlock runlock(ErlDrvRWLock *rwlck)

Read unlocks an rwlock. The rwlock currently must be read locked by the calling thread.
rw ck isapointer to an rwlock to read unlock.

Thisfunction is thread-safe.

void erl drv_rwlock rwlock(ErlDrvRWLock *rwlck)

Read/write locks an rwlock. The calling thread is blocked until the rwlock has been read/write locked. A thread that
currently has read or read/write locked the rwlock cannot lock the same rwlock again.

rw ck isapointer to an rwlock to read/write lock.

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

void erl drv_rwlock rwunlock(ErlDrvRWLock *rwlck)

Read/write unlocks an rwlock. The rwlock currently must be read/write locked by the calling thread.
rw ck isapointer to an rwlock to read/write unlock.

Thisfunction is thread-safe.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 337

erl_driver

int erl drv_rwlock tryrlock(ErlDrvRWLock *rwlck)
Triesto read lock an rwlock.
rw ck isapointer to an rwlock to try to read lock.

Returns 0 on success, otherwise EBUSY. A thread that currently has read or read/write locked the rwlock cannot try
to lock the same rwlock again.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

int erl drv_rwlock tryrwlock(ErlDrvRWLock *rwlck)

Triesto read/write lock an rwlock. A thread that currently has read or read/write locked the rwlock cannot try to lock
the same rwlock again.

rw ckispointer to an rwlock to try to read/write lock.
Returns 0 on success, otherwise EBUSY.

Warning:

If you leave an rwlock locked in an emulator thread when you let the thread out of your control, you will very
likely deadlock the whole emulator.

This function is thread-safe.

int erl drv_send term(ErlDrvTermData port, ErlDrvTermData receiver,
ErlDrvTermData* term, int n)

This function is the only way for a driver to send data to other processes than the port owner process. Parameter
recei ver specifiesthe processto receive the data.

Note:

| Parameter por t isnot an ordinary port handle, but a port handle converted using dri ver _nk_port.

Parametersport ,t ermandn work asin er|l _drv_out put _term
This function is only thread-safe when the emulator with SMP support is used.

void erl drv _set os pid(ErlDrvPort port, ErlDrvSInt pid)
Setstheos_pi d seenwhen doing er | ang: port _i nf o/ 2 onthisport.
port isthe port handle of the port (driver instance) to set the pid on. pi disthe pid to set.

int erl drv_thread create(char *name, ErlDrvTid *tid, void * (*func)(void *),

void *arg, ErlDrvThreadOpts *opts)
Creates anew thread.

338 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

name
A string identifying the created thread. It is used to identify the thread in planned future debug functionality.
tid
A pointer to athread identifier variable.
func
A pointer to afunction to execute in the created thread.
arg
A pointer to argument to the f unc function.
opts
A pointer to thread optionsto use or NULL.

Returns 0 on success, otherwise an errno value is returned to indicate the error. The newly created
thread begins executing in the function pointed to by func, and func is passed arg as argument. When
erl _drv_t hread_cr eat e returns, the thread identifier of the newly created thread is availablein*t i d. opt s
can be either aNULL pointer, or apointer to an Er | Dr vThr eadOpt s structure. If opt s isaNULL pointer, default
options are used, otherwise the passed options are used.

You are not alowed to alocate the Erl DrvThr eadOpt s structure by yourself. It must be allocated and
initialized by erl _drv_thread _opts_create.

The created thread terminates either when f unc returnsor if erl _drv_t hread_exit iscaled by the thread.
The exit value of thethread is either returned from f unc or passed asargumentto er| _drv_t hread_exit.The
driver creating the thread is responsible for joining the thread, through er | _drv_t hr ead_j oi n, beforethedriver
is unloaded. "Detached" threads cannot be created, that is, threads that do not need to be joined.

All created threads must be joined by the driver before it is unloaded. If the driver failsto join all threads created
before it is unloaded, the runtime system most likely crashes when the driver code is unloaded.

This function is thread-safe.

void erl drv thread exit(void *exit value)

Terminates the calling thread with the exit value passed as argument. exi t _val ue isa pointer to an exit value or
NULL.

You are only allowed to terminate threads created with erl _drv_t hread_create.
The exit value can later be retrieved by another thread through er| _drv_t hread_j oi n.
Thisfunction is thread-safe.

int erl drv_thread join(ErlDrvTid tid, void **exit value)

Joins the calling thread with another thread, that is, the calling thread is blocked until the thread identified by t i d
has terminated.

ti d isthethread identifier of the thread to join. exi t _val ue isapointer to a pointer to an exit value, or NULL.
Returns 0 on success, otherwise an er r no valueis returned to indicate the error.

A thread can only be joined once. The behavior of joining more than onceis undefined, an emulator crash islikely. If
exi t _val ue == NULL, theexit value of theterminated thread isignored, otherwise the exit value of the terminated
thread isstored at *exi t _val ue.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 339

erl_driver

This function is thread-safe.

char *erl drv_thread name(ErlDrvTid tid)
Returns a pointer to the name of the thread.
ti disathread identifier.

| Thisfunction is intended for debugging purposes only. |

ErlDrvThreadOpts *erl drv thread opts create(char *name)
Allocates and initializes a thread option structure.

nane isastring identifying the created thread options. It is used to identify the thread optionsin planned future debug
functionality.

Returns NULL on failure. A thread option structure is used for passing optionsto er| _drv_t hread_create. If
the structure is not modified beforeitispassedto er| _drv_t hr ead_cr eat e, the default values are used.

You are not alowed to alocate the Er| DrvThreadOpt s structure by yourself. It must be allocated and
initialized by er| _drv_t hread_opts_create.

This function is thread-safe.

void erl drv_thread opts destroy(ErlDrvThreadOpts *opts)
Destroys thread options previously created by er| _drv_t hread_opts_create.
opt s isapointer to thread options to destroy.

This function is thread-safe.

ErlDrvTid erl drv_thread self(void)
Returns the thread identifier of the calling thread.
This function is thread-safe.

ErlDrvTime erl drv_time offset(ErlDrvTimeUnit time unit)

Returns the current time offset between Erlang monotonic time and Erlang system time converted into the
ti me_unit passed asargument.

ti me_unit istimeunit of returned value.

Returns ERL_DRV_TI ME_ERRORif called with an invalid time unit argument, or if called from athread that is not
a scheduler thread.

Seedso Erl DrvTime and Erl DrvTi meUni t.

void *erl drv_tsd get(ErlDrvTSDKey key)
Returns the thread-specific data associated with key for the calling thread.

340 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_driver

key isathread-specific datakey.
Returns NULL if no data has been associated with key for the calling thread.
Thisfunction is thread-safe.

int erl drv tsd key create(char *name, ErlDrvTSDKey *key)

Creates a thread-specific data key.

nane isastring identifying the created key. It is used to identify the key in planned future debug functionality.
key isapointer to athread-specific data key variable.

Returns 0 on success, otherwise an er r no value is returned to indicate the error. The driver creating the key is
responsible for destroying it before the driver is unloaded.

Thisfunction is thread-safe.

void erl drv_tsd key destroy(ErlDrvTSDKey key)

Destroys a thread-specific data key previousy created by erl _drv_tsd key create. All thread-
specific data using this key in all threads must be cleared (see erl _drv_tsd_set) before the cal to
erl _drv_tsd_key destroy.

key isathread-specific data key to destroy.

A destroyed key is very likely to be reused soon. Therefore, if you fail to clear the thread-specific data using this
key in athread before destroying the key, you will very likely get unexpected errorsin other parts of the system.

This function is thread-safe.

void erl drv_tsd set(ErlDrvTSDKey key, void *data)

Sets thread-specific data associated with key for the calling thread. Y ou are only allowed to set thread-specific data
for threads while they are fully under your control. For example, if you set thread-specific datain athread calling a
driver callback function, it must be cleared, that is, set to NULL, before returning from the driver callback function.

key isathread-specific datakey.
dat a isapointer to data to associate with key in the calling thread.

If you fail to clear thread-specific datain an emulator thread before letting it out of your control, you might never
be able to clear this datawith later unexpected errorsin other parts of the system as aresult.

Thisfunction is thread-safe.
char *erl errno id(int error)
Returns the atom name of the Erlang error, given the error number iner r or . Theerror atomsareei nval ,enoent ,

and so on. It can be used to make error terms from the driver.

int remove driver entry(ErlDrvEntry *de)
Removes a driver entry de previously added with add_dri ver _entry.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 341

erl_driver

Driver entries added by theer | _ddl | Erlang interface cannot be removed by using this interface.

void set busy port(ErlDrvPort port, int on)

Sets and unsets the busy state of the port. If on is non-zero, the port is set to busy. If it is zero, the port is set to not
busy. Y ou typically want to combine this feature with the busy port message queue functionality.

Processes sending command data to the port are suspended if either the port or the port message queue is busy.
Suspended processes are resumed when neither the port or the port message queue is busy. Command datais in this
context datapassedtotheportusingeither Port ! {Oamer, {conmand, Data}} orport_conmand/[2, 3].

If the ERL_DRV_FLAG_SOFT_BUSY hasbeensetinthedri ver _ent ry, datacan beforced into the driver through
erl ang: port_command(Port, Data, [force]) evenif thedriver hassignaled that it is busy.

For information about busy port message queue functionality, see er| _drv_busy_nsgq_linits.

void set port control flags(ErlDrvPort port, int flags)

Sets flags for how the cont r ol driver entry function will return data to the port owner process. (The cont r ol
functioniscalled from erl ang: port _control /3.)

Currently there are only two meaningful values for fl ags: 0 means that data is returned in a list, and
PORT_CONTROL_FLAG Bl NARY means datais returned as abinary fromcont r ol .

See Also

driver_entry(3), erlang(3), erl_ddlI(3), section How to Implement an Alternative Carrier for the
Erlang Distribution> in the User's Guide

342 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

driver_entry
C Library

Usethisfunctionality with extreme care.

A driver callback is executed as a direct extension of the native code of the VM. Execution is not made in a safe
environment. The VM cannot provide the same services as provided when executing Erlang code, such as pre-
emptive scheduling or memory protection. If the driver callback function does not behave well, the whole VM
will mishbehave.

e A driver callback that crash will crash the whole VM.

* An erroneously implemented driver callback can cause aVM internal state inconsistency, which can cause a
crash of the VM, or miscellaneous misbehaviors of the VM at any point after the call to the driver callback.

e A driver callback doing lengthy work before returning degrades responsiveness of the VM, and can cause
miscellaneous strange behaviors. Such strange behaviors include, but are not limited to, extreme memory
usage, and bad load balancing between schedulers. Strange behaviors that can occur because of lengthy work
can also vary between Erlang/OTP rel eases.

As from ERTS 5.9 (Erlang/OTP R15B) the driver interface has been changed with larger types for the callbacks
out put ,control ,andcal | . Seedriver version managementiner| _dri ver.

Old drivers (compiled withaner | _dri ver. h froman ERTSversion earlier than 5.9) must be updated and have
to use the extended interface (with version management).

Thedri ver _entry structureisaC struct that all Erlang drivers define. It contains entry pointsfor the Erlang driver,
which are called by the Erlang emulator when Erlang code accesses the driver.

Theerl _driver driver API functions need a port handle that identifies the driver instance (and the port in the
emulator). Thisis only passed to the st art function, but not to the other functions. The st art function returns a
driver-defined handle that is passed to the other functions. A common practiceisto havethest ar t function allocate
some application-defined structure and stash the por t handleinit, to useit later with the driver API functions.

The driver callback functions are called synchronously from the Erlang emulator. If they take too long before
completing, they can causetime-outsin the emulator. Use the queue or asynchronous callsif necessary, asthe emulator
must be responsive.

The driver structure contains the driver name and some 15 function pointers, which are called at different times by
the emulator.

The only exported function from the driver is dri ver i nit. This function returns the dri ver _entry
structure that points to the other functions in the driver. The dri ver _i ni t function is declared with a macro,
DRI VER | NI T(dri ver nane) . (Thisis because different operating systems have different names for it.)

When writing a driver in C++, the driver entry isto be of " C' linkage. One way to do this is to put the following
line somewhere before the driver entry:

extern "C" DRIVER INIT(drivername);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 343

driver_entry

When the driver has passed the dri ver _entry over to the emulator, the driver is not allowed to modify the
driver_entry.

If compiling a driver for static inclusion through --enabl e-static-drivers, you must define
STATI C_ERLANG DRI VER beforethe DRI VER_I NI T declaration.

Do not declare the dri ver _entry const. This because the emulator must modify the handl e and the
handl e2 fields. A statically allocated, and const -declared dri ver _entry can be located in read-only
memory, which causes the emulator to crash.

Data Types
Erl DrvEntry

344 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

typedef struct erl drv _entry {
int (*init) (void); /* Called at system startup for statically
linked drivers, and after loading for
dynamically loaded drivers */
#ifndef ERL_SYS DRV
ErlDrvData (*start)(ErlDrvPort port, char *command);
/* Called when open port/2 is invoked,
return value -1 means failure */
#else
ErlDrvData (*start)(ErlDrvPort port, char *command, SysDriverOpts* opts);
/* Special options, only for system driver */
#endif
void (*stop) (ErlDrvData drv_data);
/* Called when port is closed, and when the
emulator is halted */
void (*output) (ErlDrvData drv_data, char *buf, ErlDrvSizeT len);
/* Called when we have output from Erlang to
the port */
void (*ready input) (ErlDrvData drv_data, ErlDrvEvent event);
/* Called when we have input from one of
the driver's handles */
void (*ready output) (ErlDrvData drv_data, ErlDrvEvent event);
/* Called when output is possible to one of
the driver's handles */

char *driver name; /* Name supplied as command in
erlang:open _port/2 */

void (*finish) (void); /* Called before unloading the driver -
dynamic drivers only */

void *handle; /* Reserved, used by emulator internally */

ErlDrvSSizeT (*control) (ErlDrvData drv_data, unsigned int command,
char *buf, ErlDrvSizeT len,
char **rbuf, ErlDrvSizeT rlen);

/* "ioctl" for drivers - invoked by

port control/3 */
void (*timeout) (ErlDrvData drv_data);

/* Handling of time-out in driver */

void (*outputv) (ErlDrvData drv_data, ErlIOVec *ev);

/* Called when we have output from Erlang
to the port */

void (*ready async) (ErlDrvData drv_data, ErlDrvThreadData thread data);
void (*flush)(ErlDrvData drv_data);

/* Called when the port is about to be
closed, and there is data in the
driver queue that must be flushed
before 'stop' can be called */

ErlDrvSSizeT (*call) (ErlDrvData drv_data, unsigned int command,
char *buf, ErlDrvSizeT len,
char **rbuf, ErlDrvSizeT rlen, unsigned int *flags);

/* Works mostly like 'control', a synchronous
call into the driver */

void (*event) (ErlDrvData drv_data, ErlDrvEvent event,
ErlDrvEventData event data);

/* Called when an event selected by

driver event() has occurred */

int extended marker; /* ERL_DRV_EXTENDED MARKER */

int major version; /* ERL_DRV_EXTENDED MAJOR VERSION */

int minor version; /* ERL_DRV_EXTENDED MINOR VERSION */

int driver flags; /* ERL_DRV_FLAGs */

void *handle2; /* Reserved, used by emulator internally */

void (*process exit) (ErlDrvData drv_data, ErlDrvMonitor *monitor);
/* Called when a process monitor fires */
void (*stop select) (ErlDrvEvent event, void* reserved);
/* Called to close an event object */
} ErlDrvEntry;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 345

driver_entry

int (*init)(void)
Called directly after the driver hasbeenloaded by er| _ddl | : | oad_dri ver/ 2 (actually when the driver is
added to the driver list). The driver isto return O, or, if the driver cannot initialize, - 1.

Erl DrvData (*start)(Erl DrvPort port, char* command)

Called whenthedriver isinstantiated, when er | ang: open_por t/ 2 iscaled. Thedriver isto return anumber
>= 0 or apointer, or, if the driver cannot be started, one of three error codes:

ERL_DRV_ERROR GENERAL
General error, no error code
ERL_DRV_ERROR ERRNO
Error with error codeiner r no
ERL_DRV_ERROR BADARG
Error, badar g

If an error code is returned, the port is not started.
void (*stop)(ErlDrvData drv_data)

Called when the port is closed, with er| ang: port _close/l1orPort ! {self(), close}.Notice
that terminating the port owner process also closes the port. If dr v_dat a is a pointer to memory allocated in
st art, then st op isthe place to deallocate that memory.

void (*output)(Erl DrvData drv_data, char *buf, ErlDrvSizeT |en)

Called when an Erlang process has sent data to the port. The datais pointed to by buf , and is| en bytes. Data
issenttotheport withPort ! {self(), {command, Data}} orwitherl ang: port_ command/ 2.
Depending on how the port was opened, it is to be either a list of integers 0. .. 255 or a binary. See
erl ang: open_port/2and erl ang: port _conmand/ 2.

void (*ready_input)(ErlDrvData drv_data, ErlDrvEvent event)
void (*ready_output)(ErlDrvData drv_data, ErlDrvEvent event)

Called when adriver event (specified in parameter event) issignaled. Thisisused to help asynchronous drivers
"wake up" when something occurs.

On Unix theevent isapipe or socket handle (or something that the sel ect system call understands).

On Windowsthe event isan Event or Semaphor e (or something that the Wai t For Mul t i pl eCbj ect s
API function understands). (Some trickery in the emulator allows more than the built-in limit of 64 Event s
to be used.)

To use thiswith threads and asynchronous routines, create a pipe on Unix and an Event on Windows. When the
routine completes, write to the pipe (use Set Event on Windows), this makesthe emulator call r eady _i nput
orready_out put.

Falseeventscanoccur. Thatis, callstor eady_i nput orr eady_out put athoughnoreal eventsaresignaled.
In redlity, it israre (and OS-dependant), but a robust driver must nevertheless be able to handle such cases.

char *driver_name

The driver name. It must correspond to the atom used in er | ang: open_port/ 2, and the name of the driver
library file (without the extension).

voi d (*finish)(void)
Called by theer | _ddl | driver when the driver is unloaded. (It isonly called in dynamic drivers.)
Thedriverisonly unloaded asaresult of calling er | _ddl I : unl oad_dri ver/ 1, or whenthe emulator halts.

346 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

voi d *handl e

Thisfield is reserved for the emulator's internal use. The emulator will modify this field, so it is important that
thedri ver _ent ry isnot declared const .

Erl DrvSSi zeT (*control) (Erl DrvData drv_data, unsigned int conmand, char *buf,
Erl DrvSi zeT len, char **rbuf, ErlDrvSizeT rlen)

A specid routineinvoked with er | ang: port _control / 3. It worksalittlelikean "ioctl" for Erlang drivers.
The data specifiedtoport _cont r ol / 3 arrivesinbuf and| en. Thedriver can send data back, using * r buf
andrl en.

Thisisthefastest way of calling adriver and get aresponse. It makes no context switchin the Erlang emulator and
reguires no message passing. It is suitable for calling C function to get faster execution, when Erlang istoo slow.

If the driver wantsto return data, itistoreturnitinr buf . Whencont r ol iscalled, *r buf pointsto a default
buffer of r I en bytes, which can be used to return data. Datais returned differently depending on the port control
flags (thosethat are set with er| _dri ver: set _port_control fl ags).

If the flag is set to PORT_CONTROL_FLAG BI NARY, a binary is returned. Small binaries can
be returned by writing the raw data into the default buffer. A binary can aso be returned
by setting *rbuf to point to a binary allocated with erl _driver:driver_alloc_binary.
This binary is freed automatically after control has returned. The driver can retain the binary
for read only access with erl _driver:driver_binary inc_refc to be freed later with
erl _driver:driver_free_binary.Itisneveralowedtochangethebinary after cont r ol hasreturned.
If *r buf issetto NULL, an empty list is returned.

If theflag isset to 0, dataisreturned as alist of integers. Either use the default buffer or set * r buf to point to a
larger buffer allocated with er | _dri ver: dri ver _al | oc. Thebufferisfreed automatically after cont r ol
has returned.

Using binariesis faster if more than afew bytes are returned.
The return value is the number of bytesreturned in *r buf .
void (*timeout) (Erl DrvData drv_data)

Cdled any time after the driver's timer reaches 0. The timer is activated with
erl _driver:driver_set_timer.Noprioritiesor ordering exist anong drivers, so if severa driverstime
out at the same time, anyone of them is called first.

void (*outputv)(ErlDrvData drv_data, ErllOvec *ev)

Called whenever the port is written to. If it is NULL, the out put function is called instead. This function is
faster than out put , asit takesan Er | | OVec directly, which requires no copying of the data. The port isto be
in binary mode, see er | ang: open_port/ 2.

Er | 1 Ovec contains both a Sysl OVec, suitable for wri t ev, and one or more binaries. If these binaries
are to be retained when the driver returns from out put v, they can be queued (using, for example,
erl _driver:driver_eng_bi n)or,if they arekept in astatic or global variable, the reference counter can
be incremented.

void (*ready_async) (Erl DrvData drv_data, ErlDrvThreadData thread data)

Called after an asynchronous call has completed. The asynchronous cal is started with
erl _driver:driver_async. Thisfunction is caled from the Erlang emulator thread, as opposed to the
asynchronous function, which is called in some thread (if multi-threading is enabled).

void (*flush)(Erl DrvData drv_data)

Called when the port is about to be closed, and thereis datain the driver queue that must be flushed before 'stop'
can be called.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 347

driver_entry

Erl DrvSSi zeT (*call)(Erl DrvData drv_data, unsigned int conmand, char *buf,
Erl DrvSi zeT len, char **rbuf, ErlDrvSizeT rlen, unsigned int *flags)

Called from erl ang: port _cal I / 3. It works alot like the cont r ol callback, but uses the external term
format for input and output.

command isan integer, obtained from the call from Erlang (the second argumenttoer | ang: port _cal | / 3).

buf and| en provide the arguments to the call (the third argument to er | ang: port _cal | / 3). They can be
decoded using ei functions.

r buf points to areturn buffer, r | en bytes long. The return data is to be a valid Erlang term in the external
(binary) format. This is converted to an Erlang term and returned by er | ang: port _cal | / 3 to the caler.
If more space than r| en bytes is needed to return data, *r buf can be set to memory alocated with
erl _driver:driver_all oc. Thismemory isfreed automatically after cal | has returned.

The return value is the number of bytes returned in *r buf . If ERL_DRV_ERROR_GENERAL isreturned (or in
fact, anything < 0), er | ang: port _cal | / 3 throwsaBAD ARG

void (*event)(Erl DrvData drv_data, ErlDrvEvent event, Erl DrvEventData
event _dat a)

i nt

Intentionally left undocumented.
ext ended_nar ker

Thisfieldiseither tobeequal to ERL_DRV_EXTENDED MARKERor 0. Anolddriver (not aware of the extended
driver interface) isto set this field to 0. If thisfield is 0, all the following fields must also be 0, or NULL if it
isapointer field.

maj or _version

This field is to equa ERL_DRV_EXTENDED MAJOR_VERSI ON if field ext ended_mar ker equals
ERL_DRV_EXTENDED MARKER

nm nor _versi on

This field is to equal ERL_DRV_EXTENDED M NOR_VERSI ON if field ext ended_nar ker equals
ERL_DRV_EXTENDED MARKER.

driver_flags

This field is used to pass driver capability and other information to the runtime system. If
field ext ended_nmar ker egquals ERL_DRV_EXTENDED MARKER, it is to contain O or driver flags
(ERL_DRV_FLAG *) OR'ed hitwise. The following driver flags exist:

ERL_DRV_FLAG USE_PORT_LOCKI NG

The runtime system uses port-level locking on all ports executing this driver instead of driver-level locking
when the driver is run in aruntime system with SMP support. For more information, see er| _dri ver.

ERL_DRV_FLAG SOFT_BUSY

Marks that driver instances can handle being called in the out put and/or out put v callbacks although a
driver instance has marked itself asbusy (see er| _driver:set _busy_port). Asfrom ERTS5.7.4
this flag is required for drivers used by the Erlang distribution (the behavior has always been required by
drivers used by the distribution).

ERL_DRV_FLAG_NO BUSY_MSGQ

Disables busy port message queue functionality. For more information, see
erl _driver:erl _drv_busy nmsgq limts.

348 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

ERL_DRV_FLAG USE_| NI T_ACK

When this flag is specified, the linked-in driver must manually acknowledge that the port has been
successfully startedusing er | _dri ver:erl _drv_init_ack() .Thisalowstheimplementor to make
theer | ang: open_port exit withbadar g after some initial asynchronousinitialization has been done.

voi d *handl e2

Thisfield isreserved for the emulator's internal use. The emulator modifies this field, so it is important that the
driver_entry isnot declared const .

void (*process_exit)(ErlDrvData drv_data, ErlDrvMnitor *nonitor)

Called when a monitored process exits. The dr v_dat a is the data associated with the port for which the
process is monitored (using er| _driver:driver_nonitor_process) andthenoni t or corresponds
to the Erl DrvMoni t or structure filled in when creating the monitor. The driver interface function
erl _driver:driver_get nonitored process can be used to retrieve the process ID of the exiting
processasan Er | Dr vTer nDat a.

void (*stop_select)(Erl DrvEvent event, void* reserved)
Called on behalf of er| _driver:driver_sel ect whenitissafeto close an event object.
A typical implementation on Unix istodo cl ose((i nt)event).
Argument r eser ved isintended for future use and isto be ignored.

In contrast to most of the other callback functions, st op_sel ect is called independent of any port. No
Er | Dr vDat a argument is passed to the function. No driver lock or port lock is guaranteed to be held. The port
that called dri ver _sel ect can even be closed at the time st op_sel ect iscaled. But it can also be the
casethat st op_sel ect iscaleddirectly by er| _driver:driver_sel ect.

It is not allowed to call any functions in the driver API from st op_sel ect . This strict limitation is because
the volatile context that st op_sel ect can be called.

See Also
erl _driver(3),erlang(3),erl_ddlI(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 349

erts_alloc

erts_alloc
C Library

erts_al | oc isan Erlang runtime system internal memory alocator library. erts_al | oc provides the Erlang
runtime system with a number of memory alocators.

Allocators
The following alocators are present:

tenp_all oc

Allocator used for temporary allocations.
eheap_al | oc

Allocator used for Erlang heap data, such as Erlang process heaps.
binary_all oc

Allocator used for Erlang binary data.
ets_alloc

Allocator used for et s data.
driver_alloc

Allocator used for driver data.
literal _alloc

Allocator used for constant terms in Erlang code.

sl _alloc
Allocator used for memory blocks that are expected to be short-lived.
Il _alloc

Allocator used for memory blocks that are expected to be long-lived, for example, Erlang code.
fix_alloc
A fast allocator used for some frequently used fixed size data types.
exec_al l oc
Allocator used by the Hi PE application for native executable code on specific architectures (x86_64).
std_al |l oc
Allocator used for most memory blocks not allocated through any of the other allocators described above.
sys_al l oc
Thisisnormally the default mal | oc implementation used on the specific OS.
nseg_al | oc
A memory segment allocator. It is used by other allocators for allocating memory segments and is only
available on systems that have the mmap system call. Memory segments that are deallocated are kept for a
while in a segment cache before they are destroyed. When segments are allocated, cached segments are used if
possible instead of creating new segments. This to reduce the number of system calls made.

sys_allocandliteral all oc areawaysenabled and cannot be disabled. exec_al | oc isonly available if
it is needed and cannot be disabled. mseg_al | oc isaways enabled if it is available and an allocator that usesit is
enabled. All other alocators can be enabled or disabled. By default all allocators are enabled. When an alocator is
disabled, sys_al | oc isused instead of the disabled allocator.

The main ideawiththeert s_al | oc library is to separate memory blocks that are used differently into different
memory areas, to achieve less memory fragmentation. By putting less effort in finding a good fit for memory blocks
that are frequently allocated than for those less frequently allocated, a performance gain can be achieved.

350 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

The alloc_util Framework

Internally a framework called al | oc_ut i | isused for implementing allocators. sys_al | oc and mseg_al | oc
do not use this framework, so the following does not apply to them.

An allocator manages multiple areas, called carriers, in which memory blocks are placed. A carrier is either
placed in a separate memory segment (allocated through nseg_al | oc), or in the heap segment (allocated through
sys_al | oc).

e Multiblock carriers are used for storage of several blocks.

e Singleblock carriers are used for storage of one block.

* Blocks that are larger than the value of the singleblock carrier threshold (sbct) parameter are placed in
singleblock carriers.

» Blocksthat are smaller than the value of parameter sbct are placed in multiblock carriers.

Normally an allocator creates a'"main multiblock carrier”. Main multiblock carriers are never deallocated. The size of
the main multiblock carrier is determined by the value of parameter nbcs.

Sizes of multiblock carriers allocated through nseg_al | oc are decided based on the following parameters:

e Thevalues of the largest multiblock carrier size (I nbcs)
e Thesmallest multiblock carrier size (snmbcs)
e Themultiblock carrier growth stages (nbcgs)

If nc isthe current number of multiblock carriers (the main multiblock carrier excluded) managed by an allocator,
the size of the next nseg_al | oc multiblock carrier allocated by this allocator is roughly snbcs+nc* (| nbcs-

snbcs) / nbcgs whennc <= nbcgs, and|l nbcs whennc > nbcgs. If the value of parameter sbct islarger
than the value of parameter | nbcs, the allocator may have to create multiblock carriersthat are larger than the value
of parameter | nbcs, though. Singleblock carriers allocated through nseg_al | oc are sized to whole pages.

Sizesof carriersallocated through sys_al | oc aredecided based on thevalue of thesys_al | oc carrier size(ycs)
parameter. The size of acarrier isthe least number of multiples of the value of parameter ycs satisfying the request.

Coalescing of free blocks are always performed immediately. Boundary tags (headers and footers) in free blocks are
used, which makes the time complexity for coalescing constant.

The memory alocation strategy used for multiblock carriers by an allocator can be configured using parameter as.
The following strategies are available:

Best fit
Strategy: Find the smallest block satisfying the requested block size.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
isthe number of sizes of free blocks.

Address order best fit

Strategy: Find the smallest block satisfying the requested block size. If multiple blocks are found, choose the
one with the lowest address.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
is the number of free blocks.

Address order first fit
Strategy: Find the block with the lowest address satisfying the requested block size.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
is the number of free blocks.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 351

erts_alloc

Address order first fit carrier best fit

Strategy: Find the carrier with the lowest address that can satisfy the requested block size, then find a block
within that carrier using the "best fit" strategy.

Implementation: Balanced binary search trees are used. The time complexity is proportional to log N, where N
is the number of free blocks.

Address order first fit carrier address order best fit

Strategy: Find the carrier with the lowest address that can satisfy the requested block size, then find a block
within that carrier using the "address order best fit" strategy.

Implementation: Balanced binary search trees are used. The time complexity is proportional to log N, where N
isthe number of free blocks.

Age order first fit carrier address order first fit

Strategy: Find the oldest carrier that can satisfy the requested block size, then find a block within that carrier
using the "address order first fit" strategy.

Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N
is the number of free blocks.

Age order first fit carrier best fit

Strategy: Find the oldest carrier that can satisfy the requested block size, then find a block within that carrier
using the "best fit" strategy.

Implementation: Balanced binary search trees are used. The time complexity is proportional to log N, where N
is the number of free blocks.
Age order first fit carrier address order best fit

Strategy: Find the oldest carrier that can satisfy the requested block size, then find a block within that carrier
using the "address order best fit" strategy.

Implementation: Balanced binary search trees are used. The time complexity is proportional to log N, where N
is the number of free blocks.

Good fit
Strategy: Try to find the best fit, but settle for the best fit found during alimited search.

Implementation: Theimplementation uses segregated free lists with amaximum block search depth (in each list)
to find a good fit fast. When the maximum block search depth is small (by default 3), thisimplementation has a
time complexity that is constant. The maximum block search depth can be configured using parameter nbsd.

A fit

Strategy: Do not search for afit, inspect only one free block to seeif it satisfies the request. This strategy is only
intended to be used for temporary allocations.

Implementation: Inspect the first block in afree-list. If it satisfies the request, it is used, otherwise a new carrier
is created. The implementation has a time complexity that is constant.

Asfrom ERTS5.6.1 theemulator refusesto usethis strategy on other allocatorsthant enp_al | oc. Thisbecause
it only causes problems for other allocators.

Apart from the ordinary allocators described above, some pre-allocators are used for some specific datatypes. These
pre-allocators pre-allocate a fixed amount of memory for certain data types when the runtime system starts. As long
as pre-allocated memory is available, it is used. When no pre-allocated memory is available, memory is allocated in
ordinary allocators. These pre-allocators are typically much faster than the ordinary alocators, but can only satisfy
alimited number of regquests.

352 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

System Flags Effecting erts_alloc

Only use these flags if you are sure what you are doing. Unsuitable settings can cause serious performance
degradation and even a system crash at any time during operation.

Memory allocator system flags have the following syntax: +M<S><P> <V>, where <S> is a letter identifying a
subsystem, <P> isaparameter, and <V> isthe value to use. The flags can be passed to the Erlang emulator (er 1 (1))
as command-line arguments.

System flags effecting specific alocators have an uppercase letter as <S>. The following letters are used for the
allocators:

. bi nary_al | oc
. std_all oc
. ets_alloc
. fix_ alloc

eheap_al | oc
literal _alloc
I1_alloc
nseg_al | oc
driver_alloc
sl _alloc
tenp_al |l oc
exec_al | oc
sys_all oc

XXJd0aal T T TTmMmOo®m

Flags for Configuration of mseg_alloc
+Mvantbf <size>

Absolute maximum cache bad fit (in kilobytes). A segment in the memory segment cacheis not reused if its size
exceeds the requested size with more than the value of this parameter. Defaultsto 4096.

+MM ncbf <rati o>

Relative maximum cache bad fit (in percent). A segment in the memory segment cache is not reused if its size
exceeds the requested size with more than rel ative maximum cache bad fit percent of the requested size. Defaults
to 20.

+MVsco true| fal se

Setssuper carrier only flag. Defaultstot r ue. When asuper carrier isused and thisflagist r ue,mseg_al | oc
only creates carriers in the super carrier. Notice that the al | oc_uti | framework can create sys_al | oc
carriers, so if you want all carriers to be created in the super carrier, you therefore want to disable use of
sys_al | oc carriersby also passing +Musac f al se. Whentheflagisf al se,nmseg_al | oc triesto create
carriers outside of the super carrier when the super carrier isfull.

| Setting thisflagto f al se isnot supported on al systems. The flag is then ignored. |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 353

erts_alloc

+MVscr f sd <anmount >

Sets super carrier reserved free segment descriptors. Defaultsto 65536. This parameter determines the amount
of memory to reserve for free segment descriptors used by the super carrier. If the system runs out of reserved
memory for free segment descriptors, other memory is used. This can however cause fragmentation issues, so
you want to ensure that this never happens. The maximum amount of free segment descriptors used can be
retrieved fromtheer t s_mmap tuplepart of theresult fromcalling er | ang: system i nfo({al | ocat or,
mseg_al | oc}).

+MVvscrpm true| fal se

Sets super carrier reserve physical memory flag. Defaultstot r ue. Whenthisflagist r ue, physical memory is
reserved for the whole super carrier at once when it is created. The reservation is after that left unchanged. When
thisflagisset to f al se, only virtual address space is reserved for the super carrier upon creation. The system
attemptsto reserve physical memory upon carrier creationsin the super carrier, and attempt to unreserve physical
memory upon carrier destructions in the super carrier.

Note:

What reservation of physical memory means, highly depends on the operating system, and how it isconfigured.
For example, different memory overcommit settings on Linux drastically change the behavior.

Setting thisflag to f al se ispossibly not supported on all systems. The flag is then ignored.

+MVBCS <size in MB>

Sets super carrier size (in MB). Defaults to 0, that is, the super carrier is by default disabled. The super carrier
is alarge continuous area in the virtual address space. nseg_al | oc aways tries to create new carriers in the
super carrier if it exists. Notice that theal | oc_uti | framework can create sys_al | oc carriers. For more
information, see +MVico.

+Mvhcs <anount >
Maximum cached segments. The maximum number of memory segments stored in the memory segment cache.
Vaidrangeis[0, 30].Defaultsto 10.

Flags for Configuration of sys_alloc

+Mye true
Enablessys_al | oc.

sys_al | oc cannot be disabled. |

+MYm | i bc

mal | oc library touse. Only | i bc isavailable. | i bc enablesthestandard | i bc mal | oc implementation. By
default | i bec isused.

+MYtt <size>

Trim threshold size (in kilobytes). This is the maximum amount of free memory at the top of the heap (allocated
by sbr k) that is kept by mal | oc (not released to the operating system). When the amount of free memory at
the top of the heap exceedsthe trim threshold, nal | oc releasesit (by calling sbr k). Trim threshold is specified
in kilobytes. Defaultsto 128.

354 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

This flag has effect only when the emulator is linked with the GNU C library, and uses its mal | oc
implementation.

+MYtp <size>

Top pad size (in kilobytes). Thisisthe amount of extramemory that isallocated by mal | oc whensbr k iscalled
to get more memory from the operating system. Defaultsto O.

This flag has effect only when the emulator is linked with the GNU C library, and uses its mal | oc
implementation.

Flags for Configuration of Allocators Based on alloc_util

If u isused as subsystem identifier (that is, <S> = u), al allocatorsbasedonal | oc_uti | areeffected. If B, D, E,
F,H L, R S, or T isused as subsystem identifier, only the specific allocator identifier is effected.

+McS>acul <utilization>|de

Abandon carrier utilization limit. A valid<ut i | i zat i on>isaninteger intherange[0, 100] representing
utilization in percent. When a utilization value > 0 is used, allocator instances are allowed to abandon multiblock
carriers. If de (default enabled) is passed instead of a<ut i | i zat i on>, arecommended non-zero utilization
value is used. The value chosen depends on the allocator type and can be changed between ERTS versions.
Defaultsto de, but this can be changed in the future.

Carriers are abandoned when memory utilization in the allocator instance falls below the utilization value used.
Once a carrier is abandoned, no new allocations are made in it. When an allocator instance gets an increased
multiblock carrier need, it first triesto fetch an abandoned carrier from an allocator instance of the same allocator
type. If no abandoned carrier can be fetched, it creates anew empty carrier. When an abandoned carrier has been
fetched, it will function as an ordinary carrier. This feature has special requirements on the allocation strategy
used. Only the strategies aof f, aof f cbf , aof f caobf , agef f caof f m, agef f cbf and agef f caobf
support abandoned carriers.

This feature also requires multiple thread specific instances to be enabled. When enabling this feature, multiple
thread-specific instances are enabled if not aready enabled, and the aof f cbf strategy is enabled if the
current strategy does not support abandoned carriers. This feature can be enabled on all allocators based on the
al l oc_util framework, exceptt enp_al | oc (which would be pointless).

+MkS>acfm <bytes>

Abandon carrier free block min limit. A valid <byt es> isapositive integer representing ablock size limit. The
largest free block in a carrier must be at least byt es large, for the carrier to be abandoned. The default is zero
but can be changed in the future.

Seedsoacul .
+M<S>acnl <anount >

Abandon carrier number limit. A valid <anpunt > is a positive integer representing max number of abandoned
carriers per alocator instance. Defaults to 1000 which will practically disable the limit, but this can be changed
in the future.

Seeasoacul .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 355

erts_alloc

+M<S>as bf | aobf | aof f | aof f cbf | aof f caobf | agef f caof f | agef f cbf | agef f caobf | gf | af

Allocation strategy. The following strategies are valid:

o bf (bestfit)

e aobf (addressorder best fit)

e aof f (addressorder first fit)

o aof f cbf (addressorder first fit carrier best fit)

e aof f caobf (addressorder first fit carrier address order best fit)

e agef fcaof f (ageorder first fit carrier address order first fit)

e agef f cbf (ageorder first fit carrier best fit)

e agef f caobf (ageorder first fit carrier address order best fit)

e gf (goodfit)

o af (afit)

See the description of allocation strategiesin section The alloc_util Framework.
+M<S>asbcst <si ze>

Absolute singleblock carrier shrink threshold (in kilobytes). When a block located in an nseg_al | oc
singleblock carrier is shrunk, the carrier is left unchanged if the amount of unused memory is less than this
threshold, otherwise the carrier is shrunk. Seealsor shcst .

+MkS>e true| fal se
Enables allocator <S>.
+M<S>| nbcs <si ze>

Largest (mseg_al | oc) multiblock carrier size (in kilobytes). See the description on how sizes for
nmseg_al | oc multiblock carriers are decided in section The alloc_util Framework. On 32-bit Unix style OS
this limit cannot be set > 128 MB.

+MkS>nbegs <rati o>

(mseg_al | oc) multiblock carrier growth stages. Seethe description on how sizesfor mseg_al | oc multiblock
carriers are decided in section The alloc_util Framework.

+McS>nbsd <dept h>

Maximum block search depth. Thisflag has effect only if the good fit strategy is selected for allocator <S>. When
the good fit strategy is used, free blocks are placed in segregated free-lists. Each free-list contains blocks of sizes
in a specific range. The maxiumum block search depth sets alimit on the maximum number of blocks to inspect
in afree-list during a search for suitable block satisfying the request.

+M<S>nmbes <si ze>

Main multiblock carrier size. Sets the size of the main multiblock carrier for allocator <S>. The main multiblock
carrier isalocated through sys_al | oc and is never deallocated.

+MkS>nmmmbe <anpunt >

Maximum nseg_al | oc multiblock carriers. Maximum number of multiblock carriers allocated through
nmseg_al | oc by alocator <S>. When this limit is reached, new multiblock carriers are allocated through
sys_al l oc.

+MkS>msbe <anount >

Maximum nseg_al | oc singleblock carriers. Maximum number of singleblock carriers allocated through
nseg_al | oc by alocator <S>. When this limit is reached, new singleblock carriers are alocated through
sys_al |l oc.

356 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

+MkS>r anv <bool >

Realloc always moves. When enabled, reallocate operations are more or less translated into an alocate, copy,
free sequence. This often reduces memory fragmentation, but costs performance.

+MkS>rnbent <rati o>

Relative multiblock carrier move threshold (in percent). When a block located in a multiblock carrier is shrunk,
the block ismoved if theratio of the size of the returned memory compared to the previous size is more than this
threshold, otherwise the block is shrunk at the current |location.

+M<S>rshem <rati o>

Relative singleblock carrier move threshold (in percent). When ablock located in a singleblock carrier is shrunk
to asize smaller than the value of parameter sbct , the block is left unchanged in the singleblock carrier if the
ratio of unused memory isless than this threshold, otherwise it is moved into a multiblock carrier.

+MkS>rshest <rati o>

Relative singleblock carrier shrink threshold (in percent). When ablock locatedinannseg_al | oc singleblock
carrier isshrunk, the carrier isleft unchanged if the ratio of unused memory isless than this threshold, otherwise
the carrier is shrunk. See also asbcst .

+MkS>sbcect <si ze>

Singleblock carrier threshold (in kilobytes). Blocks larger than this threshold are placed in singleblock carriers.
Blocks smaller than thisthreshold are placed in multiblock carriers. On 32-bit Unix style OSthisthreshold cannot
be set > 8 MB.

+M<S>snbcs <si ze>

Smallest (nmseg_al | oc) multiblock carrier size (in kilobytes). See the description on how sizes for
nmseg_al | oc multiblock carriers are decided in section The alloc_util Framework.

+MkS>t true| fal se

Multiple, thread-specific instances of the allocator. This option has only effect on the runtime system with SMP
support. Default behavior on the runtime system with SMP support is NoSchedul er s+1 instances. Each
scheduler uses alock-free instance of its own and other threads use a common instance.

Before ERTS 5.9 it was possible to configure asmaller number of thread-specific instances than schedulers. This
is, however, not possible anymore.

Flags for Configuration of alloc_util
All dlocatorsbasedonal | oc_uti | are effected.
+Miycs <size>

sys_al | oc carrier size. Carriers allocated through sys_al | oc are allocated in sizes that are multiples of the
sys_al | oc carrier size. Thisis not true for main multiblock carriers and carriers allocated during a memory
shortage, though.

+Mummt <anount >

Maximum nseg_al | oc carriers. Maximum number of carriers placed in separate memory segments. When
thislimit is reached, new carriers are placed in memory retrieved fromsys_al | oc.

+Musac <bool >

Allow sys_al | oc carriers. Defaultsto t rue. If set to f al se, sys_al | oc carriers are never created by
alocatorsusingtheal | oc_uti | framework.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 357

erts_alloc

Special Flag for literal_alloc
+M scs <size in MB>

literal _all oc super carrier size (in MB). The amount of virtual address space reserved for literal terms
in Erlang code on 64-bit architectures. Defaultsto 1024 (that is, 1 GB), which isusualy sufficient. Theflag is
ignored on 32-hit architectures.

Special Flag for exec_alloc
+MXscs <size in MB>

exec_al | oc super carrier size (in MB). The amount of virtual address space reserved for native executable
code used by the Hi PE application on specific architectures (x86_64). Defaultsto 512.

Instrumentation Flags
+M mtrue|fal se

A map over current allocations is kept by the emulator. The allocation map can be retrieved through module
instrunment (3).+M mtrueimpliestM s true.+M mtrueisthesameasflag-i nstr inerl (1).

+M s true|fal se

Status over allocated memory is kept by the emulator. The alocation status can be retrieved through module
i nstrument (3).

+Mt X

Reserved for future use. Do not use thisflag.

| When instrumentation of the emulator is enabled, the emulator uses more memory and runs slower. |

Other Flags
+Mea m n| max| r9c| r10b|r1llb|config
Options:
mn
Disables all allocators that can be disabled.
max
Enables all allocators (default).
r9c|ri10bjrllb

Configures dl alocators as they were configured in respective Erlang/OTP release. These will eventually
be removed.

config

Disables features that cannot be enabled while creating an alocator configuration with
erts_alloc_config(3).

This option isto be used only whilerunningert s_al | oc_confi g(3), not when using the created
configuration.

358 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erts_alloc

+M pm al || no

Lock physical memory. Defaultsto no, that is, no physical memory islocked. If settoal | , all memory mappings
made by the runtime system are locked into physical memory. If set to al | , the runtime system fails to start if
this feature is not supported, the user has not got enough privileges, or the user is not allowed to lock enough
physical memory. The runtime system also fails with an out of memory condition if the user limit on the amount
of locked memory is reached.

Notes

Only some default values have been presented here. For information about the currently used
settings and the current status of the dlocators, see erl ang: system.info(allocator) and
erl ang: system.info({allocator, Alloc}).

Most of these flags are highly implementati on-dependent and can be changed or removed without prior notice.
erts_al | oc isnot obliged to strictly use the settings that have been passed to it (it can even ignore them).

The erts_al l oc_confi g(3) tool can beusedto aid creation of anert s_al | oc configuration that is suitable
for alimited number of runtime scenarios.

See Also
erl (1),erlang(3), erts_alloc_config(3), instrunment(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 359

erl_nif

erl_nif
C Library

A NIF library contains native implementation of some functions of an Erlang module. The native implemented
functions (NIFs) are caled like any other functions without any difference to the caller. Each NIF must have an
implementation in Erlang that is invoked if the function is called before the NIF library is successfully loaded. A
typical such stub implementation isto throw an exception. But it can also be used as a fallback implementation if the
NIF library is not implemented for some architecture.

Usethisfunctionality with extreme care.

A native function is executed as a direct extension of the native code of the VM. Execution is not made in a
safe environment. The VM cannot provide the same services as provided when executing Erlang code, such as
pre-emptive scheduling or memory protection. If the native function does not behave well, the whole VM will
misbehave.

* A native function that crash will crash the whole VM.

* An erroneously implemented native function can cause aVM internal state inconsistency, which can cause a
crash of the VM, or miscellaneous mishehaviors of the VM at any point after the call to the native function.

» A native function doing lengthy work before returning degrades responsiveness of the VM, and can cause
miscellaneous strange behaviors. Such strange behaviors include, but are not limited to, extreme memory
usage, and bad load balancing between schedulers. Strange behaviors that can occur because of lengthy work
can also vary between Erlang/OTP rel eases.

A minimal example of aNIF library can look as follows:

/* niftest.c */
#include <erl nif.h>

static ERL NIF TERM hello(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{

}

return enif make string(env, "Hello world!", ERL NIF LATIN1);

static ErlNifFunc nif funcs[] =

{"hello", 0, hello}
b8

ERL NIF INIT(niftest,nif funcs,NULL,NULL,NULL,NULL)
The Erlang module can look as follows:

-module(niftest).

-export([init/0, hello/0]).

init() ->
erlang:load nif("./niftest", 0).

hello() ->
"NIF library not loaded".

Compile and test can look as follows (on Linux):

360 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

$> gcc -fPIC -shared -o niftest.so niftest.c -I $ERL ROOT/usr/include/
$> erl

1> c(niftest).
{ok,niftest}

2> niftest:hello().

"NIF library not loaded"
3> niftest:init().

ok

4> niftest:hello().
"Hello world!'"

A better solution for areal moduleisto take advantage of the new directiveon_| oad (see section Running a Function
When a Module is Loaded in the Erlang Reference Manual) to load the NIF library automatically when the module
isloaded.

A NIF does not have to be exported, it can be local to the module. However, unused local stub functions will be
optimized away by the compiler, causing loading of the NIF library to fail.

Once loaded, a NIF library is persistent. It will not be unloaded until the module code version that it belongs to is
purged.

Functionality

All interaction between NIF code and the Erlang runtime system is performed by calling NIF API functions. Functions
exist for the following functionality:

Read and write Erlang terms

Any Erlang terms can be passed to a NIF as function arguments and be returned as function return values. The
terms are of C-type ERL_NI F_TERMand can only be read or written using APl functions. Most functions
to read the content of a term are prefixed eni f _get and usually return t rue (or f al se) if the term
is of the expected type (or not). The functions to write terms are al prefixed eni f _nake_ and usualy
return the created ERL_NI F_TERM There are also some functions to query terms, like eni f _i s_at om
enif_is_identical,andenif_conpare.

All terms of type ERL_NI F_TERMbelong to an environment of type Er I Ni f Env. The lifetime of atermis
controlled by thelifetime of itsenvironment object. All API functionsthat read or write terms hasthe environment
that the term belongs to as the first function argument.

Binaries
Termsof type binary are accessed with the help of struct typeEr | Ni f Bi nar y, which containsapointer (dat a)
to the raw binary data and the length (si ze) of the datain bytes. Both dat a and si ze are read-only and are

only to be written using callsto API functions. Instances of Er | Ni f Bi nar y are, however, always allocated by
the user (usually aslocal variables).

The raw data pointed to by data is only mutable after a cal to enif_alloc_binary or
eni f _real | oc_bi nary. All other functions that operate on a binary |eave the data as read-only. A mutable
binary must in the end either be freed with eni f _r el ease_bi nary or made read-only by transferring it to
an Erlangtermwitheni f _make_bi nar y. However, it does not have to occur in the same NIF call. Read-only
binaries do not have to be released.

eni f _nmake_new bi nary can be used as a shortcut to allocate and return a binary in the same NIF call.
Binaries are sequences of whole bytes. Bitstrings with an arbitrary bit length have no support yet.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 361

erl_nif

Resource objects

The use of resource objects is a safe way to return pointers to native data structures from a NIF. A resource
object is only a block of memory alocated with eni f _al | oc_r esour ce. A handle ("safe pointer") to this
memory block can then be returned to Erlang by the use of eni f _make_r esour ce. The term returned by
eni f _make_r esour ce isopague in nature. It can be stored and passed between processes, but the only real
end usageisto passit back asan argument toaNIF. TheNIF canthencall eni f _get _r esour ce and get back
apointer to the memory block, which is guaranteed to still be valid. A resource object is not deallocated until the
last handleterm is garbage collected by the VM and theresourceisreleased with eni f _r el ease_r esour ce
(not necessarily in that order).

All resource objects are created as instances of some resource type. This makes resources from different
modules to be distinguishable. A resource type is created by calling eni f _open_resource_t ype when
a library is loaded. Objects of that resource type can then later be allocated and eni f _get _resource
verifies that the resource is of the expected type. A resource type can have a user-supplied destructor function,
which is automatically called when resources of that type are released (by either the garbage collector or
eni f _rel ease_r esour ce). Resource types are uniquely identified by a supplied name string and the name
of the implementing module.

The following is atemplate example of how to create and return a resource object.

ERL NIF TERM term;
MyStruct* obj = enif alloc resource(my resource type, sizeof(MyStruct));

/* initialize struct ... */
term = enif make resource(env, obj);

if (keep a reference of our own) {
/* store 'obj' in static variable, private data or other resource object */

}
else {

enif release resource(obj);

/* resource now only owned by "Erlang" */
}

return term;

Notice that once eni f _nmake_r esour ce creates the term to return to Erlang, the code can choose to either
keep its own native pointer to the allocated struct and release it |ater, or release it immediately and rely only on
the garbage collector to deall ocate the resource object eventually when it collects the term.

Another use of resource objects is to create binary terms with user-defined memory management.
eni f _make_r esour ce_bi nary creates abinary term that is connected to a resource object. The destructor
of the resource is called when the binary is garbage collected, at which time the binary data can be released. An
example of this can be abinary term consisting of datafrom anmap'ed file. The destructor can then do munmap
to release the memory region.

Resource types support upgrade in runtime by alowing a loaded NIF library to take over an aready existing
resource type and by that "inherit" all existing objects of that type. The destructor of the new library is thereafter
called for the inherited objects and the library with the old destructor function can be safely unloaded. Existing
resource objects, of amodule that is upgraded, must either be deleted or taken over by the new NIF library. The
unloading of alibrary is postponed as|ong as there exist resource objects with adestructor functionin thelibrary.

Module upgrade and static data

A loaded NIF library is tied to the Erlang module instance that loaded it. If the module is upgraded, the new
module instance needs to load its own NIF library (or maybe choose not to). The new module instance can,
however, choose to load the exact same NIF library as the old code if it wants to. Sharing the dynamic library
meansthat static data defined by thelibrary is shared aswell. To avoid unintentionally shared static data between

362 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

module instances, each Erlang module version can keep its own private data. This private data can be set when
the NIF library isloaded and later retrieved by callingeni f _pri v_dat a.

Threads and concurrency

A NIF isthread-safe without any explicit synchronization aslong asit acts as a pure function and only reads the
supplied arguments. When you write to a shared state either through static variablesor eni f _pri v_dat a,
you need to supply your own explicit synchronization. Thisincludes termsin process-independent environments
that are shared between threads. Resource objects also require synchronization if you treat them as mutable.

Thelibrary initialization callbacks| oad and upgr ade are thread-safe even for shared state data.
Version Management

When a NIF library is built, information about the NIF API version is compiled into the library. When a NIF
library is loaded, the runtime system verifies that the library is of a compatible version. er| _ni f. h defines
the following:

ERL_N F_MAJOR_VERSI ON

Incremented when NIF library incompatible changes are made to the Erlang runtime system. Normally
it suffices to recompile the NIF library when the ERL_NI F_MAJOR_VERSI ON has changed, but it can,
under rare circumstances, mean that NIF libraries must be dlightly modified. If so, this will of course be
documented.

ERL_NI F_M NOR_VERS| ON

Incremented when new features are added. The runtime system uses the minor version to determine what
features to use.

Theruntime system normally refusesto load aNIF library if the major versions differ, or if the major versionsare
equal and the minor version used by the NIF library is greater than the one used by the runtime system. Old NIF
libraries with lower major versions are, however, allowed after a bump of the major version during a transition
period of two major releases. Such old NIF libraries can however fail if deprecated features are used.

Time Measurement
Support for time measurement in NIF libraries:
e ErINTfTi nme
e ErINfTinmeUnit
e enif_nonotonic_tine()
e enif_tine_offset()
e enif_convert tinme_unit()
1/0 Queues

The Erlang nif library contains function for easily working with 1/0 vectors as used by the unix system call
wri t ev. Thel/O Queueis not thread safe, so some other synchronization mechanism has to be used.

e Sysl Ovec
« FErINflOvec
e enif _iog_create()

« enif_iog_destroy()

« enif_iog_eng_binary()
e enif_iog_enqv()

« enif_iog_deq()

e enif_ioqg_peek()

e enif_inspect_iovec()

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 363

erl_nif

enif_free_iovec()

Typical usage when writing to afile descriptor looks like this:

int writeiovec(ErlNifEnv *env, ERL _NIF _TERM term, ERL_NIF TERM *tail,

}

ErlNifIOQueue *q, int fd) {

ErlNifIOVec vec, *iovec = &vec;
SysIOVec *sysiovec;

int saved errno;

int iovcnt, n;

if (!enif _inspect iovec(env, 64, term, tail, &iovec))
return -2;

if (enif_ioq size(q) > 0) {
/* If the I/0 queue contains data we enqueue the iovec and
then peek the data to write out of the queue. */
if ('enif ioq enqv(q, iovec, 0))
return -3;

sysiovec = enif ioq peek(q, &iovcnt);
} else {
/* If the I/0 queue is empty we skip the trip through it. */
iovcnt = iovec->iovcnt;
sysiovec = iovec->iov;

}

/* Attempt to write the data */
n = writev(fd, sysiovec, iovcnt);
saved errno = errno;

if (enif ioq size(q) == 0) {
/* If the I/0 queue was initially empty we enqueue any
remaining data into the queue for writing later. */
if (n >= 0 && !enif ioq enqv(q, iovec, n))
return -3;
} else {
/* Dequeue any data that was written from the queue. */
if (n > 0 && 'enif ioq deq(q, n, NULL))
return -4;

}

/* return n, which is either number of bytes written or -1 if
some error happened */

errno = saved errno;

return n;

Long-running NIFs

As mentioned in the warning text at the beginning of this manual page, it is of vital importance that a native
function returns relatively fast. It is difficult to give an exact maximum amount of time that a native function is
allowed to work, but usually a well-behaving native function is to return to its caller within 1 millisecond. This
can be achieved using different approaches. If you havefull control over the codeto executein the nativefunction,
the best approach is to divide the work into multiple chunks of work and call the native function multiple times.

Thisis, however, not aways possible, for example when calling third-party libraries.

The eni f _consune_timeslice() function can be used to inform the runtime system about the length of

the NIF call. It istypically always to be used unless the NIF executes very fast.

If the NIF call istoo lengthy, thismust be handled in one of the following waysto avoid degraded responsiveness,

scheduler load balancing problems, and other strange behaviors:

364 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

Yielding NIF

If the functionality of along-running NIF can be split so that its work can be achieved through a series of
shorter NIF calls, the application has two options:

* Makethat series of NIF callsfrom the Erlang level.

* Cadl aNIF that first performs achunk of the work, then invokesthe eni f _schedul e_ni f function
to schedule another NIF call to perform the next chunk. The final call scheduled in this manner can
then return the overall result.

Breaking up along-running function in this manner enables the VM to regain control between calls to the
NIFs.

Thisapproach isaways preferred over the other alternatives described below. Thisboth from aperformance
perspective and a system characteristics perspective.

Threaded NIF

Thisisaccomplished by dispatching the work to another thread managed by the NIF library, return from the
NIF, and wait for the result. The thread can send the result back to the Erlang processusing eni f _send.
Information about thread primitivesis provided below.

Dirty NIF

Dirty NIF support is available only when the emulator is configured with dirty scheduler support. As
of ERTS version 9.0, dirty scheduler support is enabled by default on the runtime system with SMP
support. The Erlang runtime without SM P support does not support dirty schedulers even when the dirty
scheduler support is explicitly enabled. To check at runtime for the presence of dirty scheduler threads,
code can use the eni f _system i nf o() API function.

A NIF that cannot be split and cannot execute in amillisecond or lessiscalled a"dirty NIF", asit performs
work that the ordinary schedulers of the Erlang runtime system cannot handle cleanly. Applications that
make use of such functions must indicate to the runtime that the functions are dirty so they can be handled
specially. Thisis handled by executing dirty jobs on a separate set of schedulers called dirty schedulers. A
dirty NIF executing on a dirty scheduler does not have the same duration restriction as a normal NIF.

It isimportant to classify the dirty job correct. An I/O bound job should be classified as such, and a CPU
bound job should be classified as such. If you should classify CPU bound jobs as I/O bound jobs, dirty I/
O schedulers might starve ordinary schedulers. 1/0 bound jobs are expected to either block waiting for 1/0O,
and/or spend alimited amount of time moving data.

To schedule adirty NIF for execution, the application has two options:

» Setthe appropriate flags value for the dirty NIFinits Er | Ni f Func entry.

e Cdl enif_schedul e_nif, passto it a pointer to the dirty NIF to be executed, and indicate with
argument f | ags whether it expects the operation to be CPU-bound or I/0O-bound.

A job that alternates between /0O bound and CPU bound can be reclassified and rescheduled using
eni f _schedul e_ni f so that it executes on the correct type of dirty scheduler at all times. For more
information see the documentation of theer | (1) command line arguments +SDcpu, and +SDi o.

While a process executes a dirty NIF, some operations that communicate with it can take a very long time
to complete. Suspend or garbage collection of a process executing adirty NIF cannot be done until the dirty
NIF hasreturned. Thus, other processeswaiting for such operationsto complete might havetowait for avery
long time. Blocking multi-scheduling, that is, calling er | ang: system fl ag(mul ti _schedul i ng,
bl ock) , can also take a very long time to complete. This becaue all ongoing dirty operations on all dirty
schedulers must complete before the block operation can compl ete.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 365

erl_nif

Many operations communicating with a process executing a dirty NIF can, however, complete while it
executes the dirty NIF. For example, retrieving information about it through er | ang: pr ocess_i nf o,
setting its group leader, register/unregister its name, and so on.

Termination of aprocess executing adirty NIF can only be completed up to acertain point whileit executes
the dirty NIF. All Erlang resources, such as its registered name and its ETS tables, are released. All links
and monitors are triggered. The execution of the NIF is, however, not stopped. The NIF can safely continue
execution, allocate heap memory, and so on, but it is of course better to stop executing as soon as possible.
The NIF can check whether a current processis diveusing eni f _i s_current _process_al i ve.
Communicationusingeni f _sendand eni f _port _comuand isalso dropped when the sending process
is not alive. Deallocation of certain internal resources, such as process heap and process control block, is
delayed until the dirty NIF has completed.

Initialization
ERL_NI F_I Nl T(MODULE, Erl N fFunc funcs[], l|oad, NULL, upgrade, unload)

i nt

Thisisthe magic macro to initialize a NIF library. It isto be evaluated in global file scope.
MODUL E isthe name of the Erlang module as an identifier without string quotations. It is stringified by the macro.
f uncs isastatic array of function descriptors for all the implemented NIFsin thislibrary.

| oad, upgr ade and unl oad are pointers to functions. One of | oad or upgr ade is called to initiaize the
library. unl oad iscalled to release the library. All are described individually below.

Thefourth argument NULL isignored. It was earlier used for the deprectated r el oad callback whichisno longer
supported since OTP 20.

If compiling a NIF for static inclusion through --enabl e-static-nifs, you must define
STATI C_ERLANG_NI F beforethe ERL_NI F_I NI T declaration.

(*load) (Erl Ni f Env* env, void** priv_data, ERL_N F_TERM | oad_i nf 0)
| oad iscaled when the NIF library isloaded and no previously loaded library exists for this module.

*pri v_dat a can be set to point to some private data if the library needs to keep a state between NIF calls.
eni f _priv_dat a returnsthis pointer. * pri v_dat a isinitialized to NULL when | oad iscalled.

| oad_i nf o isthe second argument to er | ang: | oad_ni f/ 2.
Thelibrary failsto load if | oad returns anything other than 0. | oad can be NULL if initialization is not needed.
(*upgrade) (ErlI Ni f Env* env, void** priv_data, void** old priv_data,

ERL_N F_TERM | oad_i nf 0)

upgr ade iscalled whenthe NIF library isloaded and thereis old code of this module with aloaded NIF library.

Works as | oad, except that *ol d_pri v_dat a aready contains the value set by the last cal to | oad or
upgr ade for theold module code. * pri v_dat a isinitialized to NULL when upgr ade iscalled. It isallowed
towritetoboth*pri v_dataand*ol d_priv_dat a.

Thelibrary failsto load if upgr ade returns anything other than O or if upgr ade isNULL.

void (*unload) (ErlI N fEnv* env, void* priv_data)

unl oad is called when the module code that the NIF library belongs to is purged as old. New code of the same
module may or may not exist.

366 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

Data Types
ERL_N F_TERM

Variables of type ERL_NI F_TERMcan refer to any Erlang term. This is an opague type and values of it can
only by used either as arguments to API functions or as return values from NIFs. All ERL_NI F_TERMs belong
to an environment (Er | Ni f Env). A term cannot be destructed individually, it is valid until its environment is
destructed.

Erl N f Env

Er | Ni f Env represents an environment that can host Erlang terms. All terms in an environment are valid as
long as the environment is valid. Er | Ni f Env is an opague type; pointers to it can only be passed on to API
functions. Two types of environments exist:

Process-bound environment

Passed asthe first argument to all NIFs. All function arguments passed to a NI F belong to that environment.
The return value from a NIF must also be aterm belonging to the same environment.

A process-bound environment contains transient information about the calling Erlang process. The
environment is only valid in the thread where it was supplied as argument until the NIF returns. It is thus
usel ess and dangerous to store pointers to process-bound environments between NIF calls.

Process-independent environment

Created by calling eni f _al | oc_env. This environment can be used to store terms between NIF calls
and to send terms with eni f _send. A process-independent environment with all its terms is valid until
you explicitly invalidate it witheni f _free_env oreni f _send.

All contained terms of a list/tuple/map must belong to the same environment as the list/tuple/map itself. Terms
can be copied between environmentswith eni f _rmake_copy.

ErI Ni f Func

typedef struct {
const char* name;
unsigned arity;
ERL NIF TERM (*fptr)(ErlNifEnv* env, int argc, const ERL _NIF TERM argv[]);
unsigned flags;
} ErlNifFunc;

Describes aNIF by its name, arity, and implementation.
fptr

A pointer to the function that implements the NIF.
ar gv

Contains the function arguments passed to the NIF.
argc

The array length, that is, the function arity. ar gv[N- 1] thus denotes the Nth argument to the NIF. Notice
that theargument ar gc allowsfor the same C function to implement several Erlang functionswith different
arity (but probably with the same name).

flags
IsO for aregular NIF (and so its value can be omitted for statically initialized Er | Ni f Func instances).
f | ags can be used to indicate that the NIF isadirty NIF that is to be executed on a dirty scheduler thread.

If the dirty NIF is expected to be CPU-bound, its flags fied is to be set to
ERL_NI F_DI RTY_JOB_CPU _BOUNDor ERL_NI F_DI RTY_JOB_| O_BOUND.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 367

erl_nif

If oneof theERL_NI F_DI RTY_JOB_* _BOUNDflagsis set, and the runtime system has no support for
dirty schedulers, the runtime system refuses to load the NIF library.

Erl Ni f Bi nary

typedef struct {
unsigned size;
unsigned char* data;
} ErlNifBinary;

Erl Ni f Bi nary contains transient information about an inspected binary term. dat a is a pointer to a buffer
of si ze byteswith the raw content of the binary.

Noticethat Er | Ni f Bi nary isasemi-opaque type and you are only alowed to read fields si ze and dat a.
Erl Ni f Bi naryToTer m

An enumeration of the options that can be specified to eni f _bi nary_t o_t er m For default behavior, use
valueO.

When receiving data from untrusted sources, use option ERL_NI F_BI N2TERM_SAFE.
Erl Ni f Moni t or
Thisis an opaque data type that identifies a monitor.

The nif writer isto provide the memory for storing the monitor when calling eni f _noni t or _pr ocess. The
address of the dataisnot stored by the runtime system, so Er | Ni f Moni t or can beused asany other data, it can
be copied, moved in memory, forgotten, and so on. To compare two monitors, eni f _conpare_nonitors
must be used.

ErlI Ni fPid

A process identifier (pid). In contrast to pid terms (instances of ERL_NI F_TERM), Er | Ni f Pi ds are self-
contained and not bound to any environment. Er | Ni f Pi d isan opague type.

Erl Ni f Port

A port identifier. In contrast to port ID terms (instancesof ERL_NI F_TERM), Er | Ni f Por t sare self-contained
and not bound to any environment. Er | Ni f Por t isan opague type.

Erl Ni f Resour ceType

Each instance of Er | Ni f Resour ceType represents a class of memory-managed resource objects that can be
garbage collected. Each resource type has a unique name and a destructor function that is called when objects
of itstype are released.

Erl Ni f Resour ceTypel nit
typedef struct {
ErlNifResourceDtor* dtor;
ErlNifResourceStop* stop;
ErlNifResourceDown* down;
} ErlNifResourceTypelnit;
Initialization structure read by enif_open_resource_type X.
Er | Ni f Resour ceDt or
typedef void ErlNifResourceDtor(ErlNifEnv* env, void* obj);

The function prototype of aresource destructor function.

368 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

Theobj argument isapointer to theresource. The only allowed use for the resource in the destructor isto access
its user dataonefinal time. The destructor is guaranteed to be the last callback before the resource is deall ocated.

Er | Ni f Resour ceDown
typedef void ErlNifResourceDown(ErlNifEnv* env, void* obj, const ErlNifPid* pid, const ErlNifMonitor* m

The function prototype of a resource down function, called on the behalf of enif_monitor_process. obj isthe
resource, pi d istheidentity of the monitored processthat is exiting, and non is the identity of the monitor.

Erl Ni f Resour ceSt op
typedef void ErlNifResourceStop(ErlWNifEnv* env, void* obj, ErlNifEvent event, int is direct call);

The function prototype of a resource stop function, called on the behalf of enif _select. obj is the resource,
event isOSevent,i s_direct _cal |l istrueif the call is made directly from eni f _sel ect or faseif it
isascheduled call (potentially from another thread).

Er | Ni f Char Encodi ng

typedef enum {
ERL NIF LATIN1
}EriNifCharEncoding;

The character encoding used in strings and atoms. The only supported encoding isERL_NI F_LATI N1 for ISO
Latin-1 (8-bit ASCII).

Erl Ni f Syslnfo

Used by eni f_syst em i nf o to return information about the runtime system. Contains the same content as
Er | DrvSysl nfo.

Er I Ni f SI nt 64

A native signed 64-bit integer type.
Erl Ni f Ul nt 64

A native unsigned 64-bit integer type.
Erl Ni f Ti ne

A signed 64-bit integer type for representation of time.
Er I Ni f Ti neUnit
An enumeration of time units supported by the NIF API:

ERL N F_SEC
Seconds
ERL NI F_NMSEC

Milliseconds
ERL NI F_USEC
Microseconds
ERL NI F_NSEC
Nanoseconds

Er | Ni f Uni quel nt eger

An enumeration of the propertiesthat can berequested from eni f _uni que_i nt eger . For default properties,
usevaueO.

ERL_NI F_UNI QUE_POSI TI VE

Return only positive integers.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 369

erl_nif

ERL_NI F_UNI QUE_MONOTONI C
Return only strictly monotonically increasing integer corresponding to creation time.
Erl Ni f Hash
An enumeration of the supported hash types that can be generated using eni f _hash.
ERL_NI F_I NTERNAL _HASH

Non-portable hash function that only guarantees the same hash for the same term within one Erlang VM
instance.

It takes 32-bit salt values and generates hasheswithin 0. . 2732- 1.
ERL_NI F_PHASH2

Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture
and ERTS version.

It ignores salt values and generates hashes within 0. . 2227- 1.
Slower than ERL_NI F_| NTERNAL HASH. It correspondsto er | ang: phash2/ 1.
Sysl Ovec

A system 1/O vector, as used by wr i t ev on Unix and WBASend on Win32. It isused in Er | Ni f | OVec and
by eni f _i oq_peek.

Erl Ni fl Ovec

typedef struct {
int iovcnt;
size t size;
SysIOVec* iov;
} ErlNifIOVec;

An 1/O vector containing i ovent Sysl OVecs pointing to the data. It isused by eni f _i nspect _i ovec
and eni f _i og_engv.

Erl Ni f1 OQueueOpt s
Optionsto configureaEr | Ni f | OQueue.

ERL_NIF_I0OQ NORMAL
Create anormal 1/0 Queue

Exports

void *enif alloc(size t size)

Allocates memory of si ze bytes.

Returns NULL if the allocation fails.

The returned pointer is suitably aligned for any built-in type that fit in the allocated memory.

int enif alloc binary(size t size, ErlNifBinary* bin)

Allocates anew binary of size si ze bytes. Initiaizes the structure pointed to by bi n to refer to the allocated binary.
The binary must either bereleased by eni f _r el ease_bi nary or ownership transferred to an Erlang term with
eni f _make_bi nary. Anallocated (and owned) Er | Ni f Bi nary can be kept between NIF calls.

Returnst r ue on success, or f al se if allocation fails.

370 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ErlNifEnv *enif alloc env()

Allocates a new process-independent environment. The environment can be used to hold terms that are not bound to
any process. Such terms can later be copied to aprocess environment with eni f _nmake_copy or be sent to aprocess
asamessagewith eni f _send.

Returns pointer to the new environment.

void *enif alloc resource(ErlNifResourceType* type, unsigned size)
Allocates a memory-managed resource object of typet ype and sizesi ze bytes.

size t enif binary to term(ErlNifEnv *env, const unsigned char* data, size t
size, ERL NIF TERM *term, ErlNifBinaryToTerm opts)

Creates aterm that is the result of decoding the binary data at dat a, which must be encoded according to the Erlang
external term format. No more than si ze bytes are read from dat a. Argument opt s corresponds to the second
argumentto erl ang: binary_to_term 2 and must be either 0 or ERL_NI F_BlI N2TERM SAFE.

On success, stores the resulting term at * t er mand returns the number of bytes read. Returns O if decoding fails or
if opt s isinvaid.

Seealso ErI Ni f Bi naryToTerm erlang: binary to term 2,and enif_termto_binary.

void enif clear _env(ErlNifEnv* env)

Frees dl terms in an environment and clears it for reuse. The environment must have been alocated with
eni f _alloc_env.

int enif compare(ERL_NIF TERM lhs, ERL_NIF TERM rhs)

Returnsaninteger <0 if | hs <rhs,0ifl hs =rhs,and >0 if | hs >r hs. Corresponds to the Erlang operators
==,/ =,=<,<,>=,and > (but not =: = or =/ =).

int enif compare monitors(const ErlNifMonitor *monitorl, const ErlNifMonitor
*monitor2)

Comparestwo Er I Ni f Moni t or s. Can aso be used to imply some artificial order on monitors, for whatever reason.

Returns O if moni t or 1 and noni t or 2 are equal, < 0 if nobnitorl <nonitor2,and >0 if ronitor1l >
noni t or 2.

void enif cond broadcast(ErlNifCond *cnd)
Sameas erl| _drv_cond_br oadcast .

EriNifCond *enif cond create(char *name)
Sameas erl _drv_cond _create.

void enif cond destroy(EriNifCond *cnd)

Sameas er| _drv_cond_destroy.

void enif cond signal(ErlNifCond *cnd)
Sameas er| _drv_cond_si gnal .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 371

erl_nif

void enif cond wait(ErlNifCond *cnd, ErlNifMutex *mtx)

Sameas er|l _drv_cond wait.

int enif consume timeslice(ErlNifEnv *env, int percent)

Gives the runtime system a hint about how much CPU time the current NIF call has consumed since the last hint, or
since the start of the NIF if no previous hint has been specified. Thetimeis specified as a percent of the timeslice that
aprocess is alowed to execute Erlang code until it can be suspended to give time for other runnable processes. The
scheduling timeslice is not an exact entity, but can usually be approximated to about 1 millisecond.

Notice that it is up to the runtime system to determine if and how to use this information. Implementations on some
platforms can use other means to determine consumed CPU time. Lengthy NIFs should regardless of this frequently
cal eni f _consume_ti nmesl i ce todetermineif it is alowed to continue execution.

Argument per cent must be an integer between 1 and 100. This function must only be called from a NIF-calling
thread, and argument env must be the environment of the calling process.

Returns 1 if the timeslice is exhausted, otherwise 0. If 1 isreturned, the NIF is to return as soon as possible in order
for the processto yield.

Thisfunctionis provided to better support co-operative scheduling, improve system responsiveness, and makeit easier
to prevent misbehaviors of the VM because of a NIF monopolizing a scheduler thread. It can be used to divide length
work into a number of repeated NIF calls without the need to create threads.

See also the warning text at the beginning of this manual page.

ErlNifTime enif convert time unit(ErlNifTime val, ErlNifTimeUnit from,
ErlNifTimeUnit to)

Converts the val value of time unit f r omto the corresponding value of time unit t 0. The result is rounded using
the floor function.

val

Value to convert time unit for.
from

Time unit of val .
to

Time unit of returned value.

ReturnsERL_NI F_TI ME_ERRORf called with an invalid time unit argument.
SeealsoErINi fTimeandEr I Ni f Ti neUni t.

ERL NIF TERM enif cpu_time(ErlNifEnv *)

Returns the CPU time in the same format as er | ang: ti nest anp(). The CPU time is the time the current
logical CPU has spent executing since some arbitrary point in the past. If the OS does not support fetching this value,
eni f_cpu_ti meinvokes eni f _nmake_badar g.

int enif demonitor process(ErlNifEnv* env, void* obj, const ErlNifMonitor*
mon)

Cancels a monitor created earlier with eni f _noni t or _pr ocess. Argument obj is a pointer to the resource
holding the monitor and * non identifies the monitor.

Returns O if the monitor was successfully identified and removed. Returns a non-zero value if the monitor could not
be identified, which meansit was either

* never created for this resource

372 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

e dready cancelled
e dready triggered
e just about to be triggered by a concurrent thread

This function is only thread-safe when the emulator with SMP support is used. It can only be used in a non-SMP
emulator from a NIF-calling thread.

int enif equal tids(ErlNifTid tidl, ErINifTid tid2)
Sameas erl _drv_equal _tids.

void enif free(void* ptr)
Frees memory allocated by eni f _al | oc.

void enif free env(ErlNifEnv* env)
Frees an environment alocated witheni f _al | oc_env. All terms created in the environment are freed as well.

void enif free iovec(ErlNifIOvec* iov)
Frees an io vector returned from eni f _i nspect _i ovec. Thisis needed only if a NULL environment is passed
to eni f _i nspect _i ovec.

ErlNifIOVec *iovec = NULL;

size t max_elements = 128;

ERL_NIF TERM tail;

if (!enif_inspect iovec(NULL, max_elements, term, &tail, iovec))
return 0;

// Do things with the iovec

/* Free the iovector, possibly in another thread or nif function call */
enif free iovec(iovec);

int enif get atom(ErlNifEnv* env, ERL NIF TERM term, char* buf, unsigned
size, ErlNifCharEncoding encode)

Writes a NULL-terminated string in the buffer pointed to by buf of sizesi ze, consisting of the string representation
of the atom t er mwith encoding encode.

Returnsthe number of byteswritten (including terminating NUL L character) or O if t er misnot an atom with maximum
length of si ze- 1.

int enif get atom length(ErlNifEnv* env, ERL _NIF TERM term, unsigned* len,
ErlNifCharEncoding encode)

Sets *| en to the length (number of bytes excluding terminating NULL character) of the atom t er mwith encoding
encode.

Returnst r ue on success, or f al se if t er misnot an atom.

int enif get double(ErlNifEnv* env, ERL NIF TERM term, double* dp)
Sets* dp to the floating-point value of t er m
Returnst r ue on success, or f al se if t er misnot afloat.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 373

erl_nif

int enif get int(ErlNifEnv* env, ERL NIF TERM term, int* ip)
Sets*i p totheinteger valueof t er m
Returnst r ue on success, or f al se if t er misnot an integer or is outside the bounds of typei nt .

int enif get int64(ErlNifEnv* env, ERL NIF TERM term, ErlNifSInt64* ip)
Sets*i p totheinteger valueof t er m

Returnst r ue on success, or f al se if t er misnot an integer or is outside the bounds of a signed 64-bit integer.

int enif get local pid(ErlNifEnv* env, ERL NIF TERM term, ErlNifPid* pid)

If t er misthe pid of anode local process, this function initializes the pid variable * pi d from it and returnst r ue.
Otherwisereturnsf al se. No check is done to seeif the processis dive.

int enif get local port(ErlNifEnv* env, ERL_NIF TERM term, ErlNifPort*
port_id)

If t er midentifies a node local port, this function initializes the port variable * port _i d fromit and returnst r ue.
Otherwisereturnsf al se. No check isdone to seeif the port isalive.

int enif get list cell(ErlNifEnv* env, ERL NIF TERM list, ERL_NIF TERM* head,
ERL_NIF TERM* tail)

Sets*head and*t ai | fromlistli st.
Returnst r ue on success, or f al se if itisnot alist or the list is empty.

int enif get list length(ErlNifEnv* env, ERL NIF TERM term, unsigned* len)
Sets*| en tothelength of listt erm

Returnst r ue on success, or f al se if t er misnot aproper list.

int enif get long(ErlNifEnv* env, ERL NIF TERM term, long int* ip)
Sets*i p tothelonginteger valueof t er m
Returnst r ue on success, or f al se if t er misnot an integer or is outside the bounds of typel ong i nt .

int enif get map size(ErlNifEnv* env, ERL NIF TERM term, size t *size)
Sets* si ze to the number of key-value pairsinthemapt er m

Returnst r ue on success, or f al se if t er misnot amap.

int enif get map value(ErlNifEnv* env, ERL_NIF TERM map, ERL_NIF TERM key,
ERL_NIF TERM* value)

Sets* val ue tothe value associated with key in the map nap.
Returnst r ue on success, or f al se if map isnot amap or if map does not contain key.

int enif get resource(ErINifEnv* env, ERL_NIF TERM term, ErlNifResourceType*

type, void** objp)
Sets* obj p to point to the resource object referredto by t er m

374 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

Returnst r ue on success, or f al se if t er misnot ahandle to aresource object of typet ype.

int enif get string(ErlNifEnv* env, ERL NIF TERM list, char* buf, unsigned
size, ErlNifCharEncoding encode)

Writes a NULL-terminated string in the buffer pointed to by buf with size si ze, consisting of the charactersin the
string | i st . The characters are written using encoding encode.

Returns one of the following:

* The number of bytes written (including terminating NULL character)
e -si ze if the string was truncated because of buffer space
e« 0ifli st isnotastring that can be encoded with encode or if si ze was< 1.

The written string is always NULL -terminated, unless buffer si ze is< 1.

int enif get tuple(ErlNifEnv* env, ERL_NIF TERM term, int* arity, const
ERL_NIF TERM** array)

Ift er misatuple, thisfunction sets* ar r ay to point to an array containing the elementsof thetuple, and sets*ari ty
to the number of elements. Notice that the array isread-only and (*arr ay) [N- 1] isthe Nth element of the tuple.
*ar r ay isundefined if the arity of the tupleis zero.

Returnst r ue on success, or f al se if t er misnot atuple.

int enif get uint(ErlNifEnv* env, ERL NIF TERM term, unsigned int* ip)
Sets*i p tothe unsigned integer value of t er m

Returnst r ue on success, or f al se if t er misnot an unsigned integer or is outside the bounds of type unsi gned
int.

int enif get uint64(ErlNifEnv* env, ERL NIF TERM term, ErlNifUInt64* ip)
Sets*i p totheunsigned integer valueof t er m

Returnst r ue on success, or f al se if t er mis not an unsigned integer or is outside the bounds of an unsigned 64-
bit integer.

int enif get ulong(ErlNifEnv* env, ERL NIF TERM term, unsigned long* ip)
Sets*i p totheunsigned long integer value of t er m

Returnst r ue on success, or f al se if t er misnot an unsigned integer or is outside the bounds of type unsi gned
| ong.

int enif getenv(const char* key, char* value, size t *value size)
Sameas er| _drv_getenv.

int enif has pending exception(ErlNifEnv* env, ERL NIF TERM* reason)

Returns t r ue if a pending exception is associated with the environment env. If reason is a NULL pointer,
ignore it. Otherwise, if a pending exception associated with env exists, set * r eason to the value of the exception
term. For example, if eni f_nake_badar g is caled to set a pending badar g exception, a later cal to
eni f _has_pendi ng_excepti on(env, &reason) sets*r eason to theatom badar g, thenreturnt r ue.

Seeaso eni f _nake_badargand eni f _rai se_excepti on.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 375

erl_nif

EriNifUInt64 enif hash(ErlNifHash type, ERL_NIF TERM term, ErlNifUInt64 salt)
Hashest er maccording to the specified Er | Ni f Hash t ype.
Ranges of taken salt (if any) and returned value depend on the hash type.

int enif inspect binary(ErlNifEnv* env, ERL _NIF TERM bin term, ErlNifBinary*
bin)

Initializes the structure pointed to by bi n with information about binary term bi n_t er m

Returnst r ue on success, or f al se if bi n_t er misnot abinary.

int enif inspect iolist as binary(ErlNifEnv* env, ERL NIF TERM term,
ErlNifBinary* bin)

Initializes the structure pointed to by bi n with a continuous buffer with the same byte content asi ol i st . Aswith
i nspect _bi nary, the data pointed to by bi n istransient and does not need to be released.

Returnst r ue on success, or f al se ifi ol i st isnot aniolist.

int enif inspect iovec(ErlNifEnv* env, size t max _elements, ERL NIF TERM
iovec_term, ERL NIF TERM* tail, ErlNifIOVec** iovec)

Fills i ovec with the list of binaries provided in i ovec_t er m The number of elements handled in the cal is
limited to max_el enent s, andt ai | is set to the remainder of the list. Note that the output may be longer than
max_el enent s on some platforms.

To create alist of binaries from an arbitrary iolist, use erl ang: i ol i st _to_i ovec/ 1.
When calling this function, i ovec should contain a pointer to NULL or a ErINiflOVec structure that should be used
if possible. e.g.

/* Don't use a pre-allocated structure */
ErlNifIOVec *iovec = NULL;
enif inspect iovec(env, max elements, term, &tail, &iovec);

/* Use a stack-allocated vector as an optimization for vectors with few elements */
EriNifIOVec vec, *iovec = &vec;
enif inspect iovec(env, max elements, term, &tail, &iovec);

The contents of thei ovec isvalid until the called nif function returns. If thei ovec should be valid after the nif call
returns, it is possible to call this function with a NULL environment. If no environment is given thei ovec ownsthe
datain the vector and it hasto be explicitly freed usingeni f _free_i ovec .

Returnst r ue on success, or f al se if i ovec_t er mnot an iovec.

ErlNifIOQueue *enif ioq create(ErlNifIOQueueOpts opts)
Create anew /O Queue that can be used to storedata. opt s hastobesetto ERL_NI F_| OQ NORMAL.

void enif ioq destroy(ErlNifIOQueue *q)
Destroy the I/O queue and free all of it's contents

int enif ioq deq(ErlNifIOQueue *q, size t count, size t *size)
Dequeue count bytesfrom the 1/0O queue. If si ze isnot NULL, the new size of the queueis placed there.
Returnst r ue on success, or f al se if the |/O does not contain count bytes. On failure the queue is eft un-altered.

376 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

int enif ioq enq binary(ErlNifIOQueue *q, ErlNifBinary *bin, size t skip)
Enqueue the bi n into g skipping thefirst ski p bytes.

Returnst r ue on success, or f al se if ski p is greater than the size of bi n. Any ownership of the binary datais
transferred to the queue and bi n isto be considered read-only for the rest of the NIF call and then as released.

int enif ioq enqv(ErlNifIOQueue *q, ErlNifIOVec *iovec, size t skip)
Enqueuethei ovec into q skipping thefirst ski p bytes.

Returnst r ue on success, or f al se if ski p isgreater thanthe sizeof i ovec.

SysIOVec *enif ioq peek(ErlNifIOQueue *q, int *iovlen)

Get the 1/0 queue as a pointer to an array of Sys| OVecs. It aso returns the number of elementsini ovl en. This
isthe only way to get data out of the queue.

Nothing is removed from the queue by this function, that must be donewitheni f _i oq_deq.

Thereturned array is suitable to use with the Unix system call wri t ev.

size t enif ioq size(ErlNifIOQueue *q)
Get the size of .

int enif _is atom(ErlNifEnv* env, ERL _NIF TERM term)
Returnst r ue if t er misan atom.

int enif _is binary(ErlNifEnv* env, ERL_NIF TERM term)

Returnst r ue if t er misabinary.

int enif is current process alive(ErlNifEnv* env)
Returnst r ue if the currently executing processis currently alive, otherwisef al se.

This function can only be used from a NIF-calling thread, and with an environment corresponding to currently
executing processes.

int enif is empty list(ErlNifEnv* env, ERL NIF TERM term)
Returnst r ue if t er misan empty list.

int enif is exception(ErlNifEnv* env, ERL_NIF TERM term)
Return trueif t er mis an exception.

int enif is fun(ErlNifEnv* env, ERL NIF TERM term)
Returnst r ue if t er misafun.

int enif is identical(ERL NIF TERM lhs, ERL NIF TERM rhs)
Returnst r ue if the two terms are identical. Corresponds to the Erlang operators =: = and =/ =.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 377

erl_nif

int enif _is list(ErlNifEnv* env, ERL_NIF TERM term)

Returnst r ue if t er misalist.

int enif is map(ErlNifEnv* env, ERL NIF TERM term)
Returnst r ue if t er misamap, otherwisef al se.

int enif_is number (ErlNifEnv* env, ERL_NIF TERM term)
Returnst r ue if t er misanumber.

int enif is pid(ErlNifEnv* env, ERL_NIF TERM term)

Returnst r ue if t er misapid.

int enif is port(ErlNifEnv* env, ERL NIF TERM term)
Returnst r ue if t er misaport.

int enif _is port alive(ErlNifEnv* env, ErlNifPort *port id)
Returnstrue if port _i disadlive.

This function is only thread-safe when the emulator with SMP support is used. It can only be used in a non-SMP
emulator from a NIF-calling thread.

int enif is process alive(ErINifEnv* env, ErlNifPid *pid)
Returnst r ue if pi d isalive.

This function is only thread-safe when the emulator with SMP support is used. It can only be used in a non-SMP
emulator from a NIF-calling thread.

int enif is ref(ErlNifEnv* env, ERL_NIF TERM term)

Returnst r ue if t er misareference.

int enif is tuple(ErlNifEnv* env, ERL NIF TERM term)
Returnst r ue if t er misatuple.

int enif keep resource(void* obj)

Adds a reference to resource object obj obtaned from enif_alloc_resource. Each cal to
eni f _keep_resour ce for an object must be balanced by acall to eni f _rel ease_r esour ce before the
object is destructed.

ERL NIF TERM enif make atom(ErlNifEnv* env, const char* name)

Creates an atom term from the NULL-terminated C-string name with ISO Latin-1 encoding. If the length
of nane exceeds the maximum length allowed for an atom (255 characters), eni f _make_at om invokes
eni f _make_badar g.

378 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ERL NIF TERM enif make atom_ len(ErlNifEnv* env, const char* name, size t len)

Create an atom term from the string name with length | en. NULL characters are treated as any other
characters. If | en exceeds the maximum length allowed for an atom (255 characters), eni f _make_at ominvokes
eni f _make_badar g.

ERL NIF TERM enif make badarg(ErlNifEnv* env)

Makes abadar g exception to be returned from a NIF, and associates it with environment env. Once a NIF or any
functionit calsinvokeseni f _make_badar g, theruntime ensuresthat abadar g exceptionisraised when the NIF
returns, even if the NIF attempts to return a non-exception term instead.

The return value from eni f _make_badar g can be used only as the return value from the NIF that invoked it
(directly or indirectly) or be passed to eni f _i s_except i on, but not to any other NIF API function.

Seealso eni f _has_pendi ng_excepti onand eni f_rai se_exception.

Before ERTS 7.0 (Erlang/OTP 18), thereturn valuefromeni f _make_badar g had to be returned from the NIF.
This requirement is now lifted as the return value from the NIF isignored if eni f _nmake_badar g has been
invoked.

ERL NIF TERM enif make binary(ErlNifEnv* env, ErlNifBinary* bin)

Makes a binary term from bi n. Any ownership of the binary datais transferred to the created term and bi n isto be
considered read-only for the rest of the NIF call and then as released.

ERL NIF TERM enif make copy(ErlNifEnv* dst env, ERL NIF TERM src term)

Makes a copy of term sr c_t er m The copy is created in environment dst _env. The source term can be located
in any environment.

ERL NIF TERM enif make double(ErlNifEnv* env, double d)

Creates a floating-point term from adoubl e. If argument doubl e isnot finiteor isNaN, eni f _make_doubl e
invokes eni f _nmake_badar g.

int enif make existing atom(ErlNifEnv* env, const char* name, ERL NIF TERM*
atom, ErlNifCharEncoding encode)

Triesto create the term of an already existing atom from the NULL-terminated C-string nane with encoding encode.

If the atom aready exists, this function stores the term in * at omand returnst r ue, otherwisef al se. Also returns
f al se if thelength of nanme exceeds the maximum length allowed for an atom (255 characters).

int enif make existing atom len(ErlNifEnv* env, const char* name, size t len,
ERL NIF TERM* atom, ErlNifCharEncoding encoding)

Triesto create theterm of an aready existing atom from the string nane with length | en and encoding encode. NUL L
characters are treated as any other characters.

If the atom already exists, this function stores the term in * at omand returnst r ue, otherwise f al se. Also returns
f al se if | en exceeds the maximum length allowed for an atom (255 characters).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 379

erl_nif

ERL NIF TERM enif make int(ErlNifEnv* env, int 1)

Creates an integer term.

ERL NIF TERM enif make int64(ErlNifEnv* env, ErlNifSInt64 i)
Creates an integer term from a signed 64-bit integer.

ERL NIF TERM enif make list(ErlNifEnv* env, unsigned cnt, ...)

Creates an ordinary list term of length cnt . Expectscnt number of arguments (after cnt) of type ERL_NI F_TERM
asthe elements of thelist.

Returns an empty listif cnt isO.

ERL NIF TERM enif make 1istl(ErlNifEnv* env, ERL_NIF TERM el)

ERL NIF TERM enif make 1list2(ErlNifEnv* env, ERL NIF TERM el, ERL NIF TERM
e2)

ERL_NIF TERM enif make list3(ErlNifEnv* env, ERL NIF TERM el, ERL NIF TERM
e2, ERL_NIF TERM e3)

ERL NIF TERM enif make list4(ErlNifEnv* env, ERL_NIF TERM el, ...,
ERL NIF TERM e4)

ERL NIF TERM enif make list5(ErlNifEnv* env, ERL NIF TERM el, ...,
ERL NIF TERM e5)

ERL NIF TERM enif make 1ist6(ErlNifEnv* env, ERL_NIF TERM el, ...,
ERL NIF TERM e6)

ERL NIF TERM enif make list7(ErlNifEnv* env, ERL NIF TERM el, ...,
ERL NIF TERM e7)

ERL NIF TERM enif make 1ist8(ErlNifEnv* env, ERL_NIF TERM el, ...,
ERL _NIF TERM e8)

ERL NIF TERM enif make 1ist9(ErlNifEnv* env, ERL _NIF TERM el, ...,
ERL NIF TERM e9)

Creates an ordinary list term with length indicated by the function name. Prefer these functions (macros) over the
variadiceni f _make_1i st to get acompile-time error if the number of arguments does not match.

ERL NIF TERM enif make list cell(ErlNifEnv* env, ERL NIF TERM head,
ERL_NIF TERM tail)

Createsalistcell [head | tail].

ERL NIF TERM enif make list from array(ErlNifEnv* env, const ERL NIF TERM
arr[], unsigned cnt)

Creates an ordinary list containing the elements of array ar r of length cnt .
Returns an empty list if cnt isO.

ERL NIF TERM enif make long(ErlNifEnv* env, long int i)

Creates an integer term from al ong i nt.

380 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

int enif make map put(ErINifEnv* env, ERL_NIF TERM map_in, ERL _NIF TERM key,
ERL NIF TERM value, ERL NIF TERM* map out)

Makes a copy of map map_i n and inserts key with val ue. If key aready existsin map_i n, the old associated
valueisreplaced by val ue.

If successful, thisfunction sets* map_out tothenew map andreturnst r ue. Returnsf al se if map_i n isnotamap.

Thermap_i n term must belong to environment env.

int enif make map remove(ErlNifEnv* env, ERL NIF TERM map in, ERL NIF TERM
key, ERL_NIF TERM* map out)

If map map_i n contains key, this function makes a copy of map_i n in * map_out , and removes key and the
associated value. If map map_i n doesnot containkey, * map_out issettomap_i n.

Returnst r ue on success, or f al se if map_i n isnot amap.
Thermap_i n term must belong to environment env.

int enif make map update(ErlNifEnv* env, ERL NIF TERM map in, ERL NIF TERM
key, ERL _NIF TERM new value, ERL NIF TERM* map out)

Makes a copy of map map_i n and replace the old associated value for key with new_val ue.

If successful, this function sets * map_out to the new map and returnst r ue. Returnsf al se if map_i n isnot a
map or if it does not contain key.

Thermap_i n term must belong to environment env.

unsigned char *enif make new binary(ErlNifEnv* env, size t size,
ERL_NIF TERM* termp)

Allocates a binary of size si ze bytes and creates an owning term. The binary data is mutable until the calling NIF
returns. Thisis a quick way to create a new binary without having to use Er | Ni f Bi nar y. The drawbacks are that
the binary cannot be kept between NIF calls and it cannot be reallocated.

Returns a pointer to the raw binary dataand sets* t er np to the binary term.

ERL NIF TERM enif make new map(ErlNifEnv* env)
Makes an empty map term.

ERL _NIF TERM enif make pid(ErlNifEnv* env, const ErlNifPid* pid)
Makes apid term from * pi d.

ERL NIF TERM enif make ref(ErlNifEnv* env)
Creates areferencelike er | ang: make_ref /0.

ERL NIF TERM enif make resource(ErlNifEnv* env, void* obj)

Creates an opaque handle to a memory-managed resource object obtained by enif _al | oc_resource. No
ownership transfer is done, as the resource object till needs to be released by enif_rel ease_resource.
However, notice that the call toeni f _r el ease_r esour ce can occur immediately after obtaining the term from
eni f _make_r esour ce, in which case the resource object is deallocated when the term is garbage collected. For
more details, see the example of creating and returning a resource object in the User's Guide.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 381

erl_nif

Since ERTS 9.0 (OTP-20.0), resource terms have a defined behavior when compared and seriaized through
ter m_ t o_bi nary or passed between nodes.

» Two resource terms will compare equal iff they would yield the same resource object pointer when passed
toeni f _get _resource.

e A resoure term can be serialized with term t o_bi nary and later be fully recreated if the resource
object is still alive when bi nary to_termis caled. A stale resource term will be returned from
bi nary_t o_t er mif the resource object has been deallocated. eni f _get resour ce will return false
for stale resource terms.

The same principles of serialization apply when passing resource termsin messages to remote nodes and back
again. A resource term will act stale on all nodes except the node where its resource object is till aive in
memory.

Before ERTS 9.0 (OTP-20.0), all resource terms did compare equal to each other and to empty binaries (<<>>).
If seridlized, they would be recreated as plain empty binaries.

ERL NIF TERM enif make resource binary(ErlNifEnv* env, void* obj, const void*
data, size t size)

Creates a binary term that is memory-managed by a resource object obj obtained by eni f _al | oc_r esour ce.
Thereturned binary term consists of si ze bytes pointed to by dat a. Thisraw binary data must be kept readable and
unchanged until the destructor of the resourceis called. The binary data can be stored external to the resource object,
in which case the destructor is responsible for releasing the data.

Severa binary terms can be managed by the same resource object. The destructor is not called until the last binary is
garbage collected. This can be useful to return different parts of alarger binary buffer.

As with eni f _make_resour ce, no ownership transfer is done. The resource still needs to be released with
eni f _rel ease_resource.

int enif make reverse list(ErlNifEnv* env, ERL NIF TERM list in, ERL NIF TERM
*1list out)

Sets*| i st _out tothereverselist of thelistl i st _i nandreturnst r ue, orreturnsf al seifl i st_i nisnotalist.

This function is only to be used on short lists, as a copy is created of the list, which is not released until after the
NIF returns.

Thel i st _i n term must belong to environment env.

ERL NIF TERM enif make string(ErlNifEnv* env, const char* string,
ErlNifCharEncoding encoding)

Creates alist containing the characters of the NULL-terminated string st r i ng with encoding encoding.

ERL NIF TERM enif make string len(ErlNifEnv* env, const char* string, size t
len, ErlNifCharEncoding encoding)

Createsalist containing the charactersof thestring st r i ng withlength| en and encoding encoding. NULL characters
are treated as any other characters.

382 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

ERL NIF TERM enif make sub binary(ErlNifEnv* env, ERL _NIF TERM bin term,
size t pos, size t size)

Makesasubbinary of binary bi n_t er m starting at zero-based position pos withalengthof si ze bytes.bi n_t erm
must be abinary or bitstring. pos+si ze must be less or equal to the number of whole bytesin bi n_t erm

ERL NIF TERM enif make tuple(ErlNifEnv* env, unsigned cnt, ...)

Creates a tuple term of arity cnt . Expects cnt number of arguments (after cnt) of type ERL_NI F_TERMas the
elements of the tuple.

ERL NIF TERM enif make tuplel(ErlNifEnv* env, ERL_NIF TERM el)

ERL NIF TERM enif make tuple2(ErlNifEnv* env, ERL _NIF TERM el, ERL NIF TERM
e?2)

ERL_NIF TERM enif make tuple3(ErlNifEnv* env, ERL NIF TERM el, ERL NIF TERM
e2, ERL_NIF TERM e3)

ERL NIF TERM enif make tupled4 (ErINifEnv* env, ERL_NIF TERM el, ...,
ERL NIF TERM e4)

ERL NIF TERM enif make tuple5(ErlNifEnv* env, ERL NIF TERM el, ...,
ERL NIF TERM e5)

ERL NIF TERM enif make tuple6(ErINifEnv* env, ERL_NIF TERM el, ...,
ERL_NIF TERM e6)

ERL NIF TERM enif make tuple7(ErlNifEnv* env, ERL_NIF TERM el, ...,
ERL NIF TERM e7)

ERL NIF TERM enif make tuple8(ErlNifEnv* env, ERL NIF TERM el, ...,
ERL NIF TERM e8)

ERL NIF TERM enif make tuple9(ErNifEnv* env, ERL_NIF TERM el, ...,
ERL _NIF TERM e9)

Creates a tuple term with length indicated by the function name. Prefer these functions (macros) over the variadic
eni f _make_t upl e to get acompile-time error if the number of arguments does not match.

ERL NIF TERM enif make tuple from array(ErlNifEnv* env, const ERL NIF TERM
arr[], unsigned cnt)

Creates atuple containing the elements of array ar r of lengthcnt .

ERL_NIF TERM enif make uint(ErlNifEnv* env, unsigned int 1)
Creates an integer term from anunsi gned i nt.

ERL NIF TERM enif make uint64 (ErlNifEnv* env, ErlNifUInt64 i)

Creates an integer term from an unsigned 64-bit integer.

ERL NIF TERM enif make ulong(ErlNifEnv* env, unsigned long 1)
Creates an integer term fromanunsi gned | ong int.

ERL NIF TERM enif make unique_integer(ErlNifEnv *env, ErlNifUniqueInteger

properties)
Returns a unique integer with the same properties as specified by er | ang: uni que_i nt eger/ 1.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 383

erl_nif

env isthe environment to create the integer in.

ERL_NI F_UNI QUE_PGCSI Tl VE and ERL_NI F_UNI QUE_MONOTONI C can be passed as the second argument to
change the properties of the integer returned. They can be combined by OR:ing the two values together.

Seealso Er| Ni f Uni quel nt eger .

int enif map_ iterator create(ErlNifEnv *env, ERL_NIF TERM map,
ErlNifMapIterator *iter, ErlNifMapIteratorEntry entry)

Creates an iterator for the map map by initializing the structure pointed to by i t er . Argument ent ry determines
the start position of theiterator: ERL_NI F_MAP_| TERATOR_FI RST or ERL_NI F_MAP_| TERATOR LAST.

Returnst r ue on success, or false if map isnot a map.

A map iterator is only useful during the lifetime of environment env that the map belongs to. The iterator must be
destroyed by calling eni f _map_i terat or _destroy:

ERL NIF TERM key, value;
ErlNifMapIterator iter;
enif map iterator create(env, my map, &iter, ERL NIF MAP ITERATOR FIRST);

while (enif map iterator get pair(env, &iter, &key, &value)) {
do_something(key,value);
enif map iterator next(env, &iter);

}

enif map iterator destroy(env, &iter);

The key-value pairs of a map have no defined iteration order. The only guarantee is that the iteration order of a
single map instance is preserved during the lifetime of the environment that the map belongs to.

void enif map iterator destroy(ErlNifEnv *env, ErlNifMapIterator *iter)
Destroys amap iterator created by eni f _map_iterator_create.

int enif map iterator get pair(ErlNifEnv *env, ErlNifMapIterator *iter,
ERL NIF TERM *key, ERL NIF TERM *value)

Gets key and value terms at the current map iterator position.

On success, sets *key and *val ue and returnst r ue. Returns f al se if the iterator is positioned at head (before
first entry) or tail (beyond last entry).

int enif map_iterator_is head (ErlNifEnv *env, ErlNifMapIterator *iter)
Returnst r ue if map iterator i t er is positioned before the first entry.

int enif map iterator is tail(ErINifEnv *env, ErlNifMapIterator *iter)
Returnst r ue if map iterator i t er ispositioned after the last entry.

int enif map iterator next(ErlNifEnv *env, ErlNifMapIterator *iter)
Increments map iterator to point to the next key-value entry.

384 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

Returnst r ue if the iterator is now positioned at a valid key-value entry, or f al se if the iterator is positioned at
the tail (beyond the last entry).

int enif map iterator prev(ErlNifEnv *env, ErlNifMapIterator *iter)
Decrements map iterator to point to the previous key-value entry.

Returnst r ue if the iterator is now positioned at a valid key-value entry, or f al se if the iterator is positioned at
the head (before the first entry).

int enif monitor process(ErlNifEnv* env, void* obj, const ErlNifPid*
target pid, ErlNifMonitor* mon)

Starts monitoring aprocessfrom aresource. When aprocessismonitored, aprocess exit resultsin acall to the provided
down callback associated with the resource type.

Argument obj is pointer to the resource to hold the monitor and *t ar get _pi d identifies the local process to be
monitored.

If mon isnot NULL, asuccessful call storesthe identity of the monitor inthe Er I Ni f Moni t or struct pointed to by
non. Thisidentifier isused to refer to the monitor for later removal witheni f _denoni t or _pr ocess or compare
with eni f _conpar e_noni t or s. A monitor is automatically removed when it triggers or when the resource is
deallocated.

Returns 0 on success, < 0 if no down callback is provided, and > 0 if the process is no longer alive.

This function is only thread-safe when the emulator with SMP support is used. It can only be used in a non-SMP
emulator from a NIF-calling thread.

EriNifTime enif monotonic time(ErlNifTimeUnit time unit)
Returns the current Erlang monotonic time. Notice that it is not uncommon with negative values.
time_unit isthetime unit of the returned value.

Returns ERL_NI F_TI ME_ERRORf called with an invalid time unit argument, or if called from athread that is not
a scheduler thread.

SeedsoErINifTimeandEr I Ni f Ti neUni t.

ErlNifMutex *enif mutex create(char *name)
Sameas er| _drv_nutex_create.

void enif mutex destroy(ErlNifMutex *mtx)
Sameas er| _drv_nut ex_destroy.

void enif mutex lock(ErlNifMutex *mtx)
Sameas er| _drv_mut ex_| ock.

int enif mutex trylock(ErlNifMutex *mtx)
Sameas erl| _drv_nutex_tryl ock.

void enif mutex unlock(ErlNifMutex *mtx)
Sameas er| _drv_nut ex_unl ock.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 385

erl_nif

ERL NIF TERM enif now_time(ErlNifEnv *env)
Returnsan er | ang: now() time stamp.

Thisfunction is deprecated.

ErlNifResourceType *enif open resource type(ErlNifEnv* env, const char*
module str, const char* name, ErlNifResourceDtor* dtor, ErlNifResourceFlags
flags, ErlNifResourceFlags* tried)

Creates or takes over aresource type identified by the string nane and gives it the destructor function pointed to by
dt or . Argument f | ags can have the following values:

ERL_NI F_RT_CREATE
Creates a new resource type that does not already exist.

ERL_NI F_RT_TAKEOVER
Opens an existing resource type and takes over ownership of al itsinstances. The supplied destructor dt or is
called both for existing instances and new instances not yet created by the calling NIF library.

Thetwo flag values can be combined with bitwise OR. Theresourcetypenameislocal to the calling module. Argument
nmodul e_st r isnot (yet) used and must be NULL. dt or can be NULL if no destructor is needed.

On success, the function returns a pointer to the resourcetypeand *t ri ed is set to either ERL_NI F_RT_CREATE
or ERL_NI F_RT_TAKEOVER to indicate what was done. On failure, returns NULL and sets*tri ed tofl ags. It
isalowedtosett ri ed to NULL.

Noticethat eni f _open_r esour ce_t ype isonly alowed to be called in the two callbacks| oad and upgr ade.

Seedso eni f _open_resource_type_x.

ErlNifResourceType *enif open resource type Xx(ErlNifEnv* env, const char*
name, const ErlNifResourceTypeInit* init, ErlNifResourceFlags flags,
ErlNifResourceFlags* tried)

Sameaseni f _open_resour ce_t ype except it accepts additional callback functions for resource types that are
used together witheni f _sel ect andeni f _noni t or _process.

Argument i ni t isapointer to an Er | Ni f Resour ceTypel ni t structure that contains the function pointers for
destructor, down and stop callbacks for the resource type.

int enif port command(ErlNifEnv* env, const ErlNifPort* to port, ErlNifEnv
*msg_env, ERL NIF TERM msg)

Worksas er | ang: port _commrand/ 2, except that it is always completely asynchronous.

env
The environment of the calling process. Must not be NULL.
*to_port
The port ID of the receiving port. The port ID isto refer to aport on the local node.
nsg_env
The environment of the message term. Can be a process-independent environment allocated with
eni f _all oc_env or NULL.
nsg
The message term to send. The same limitations apply as on the payload to er | ang: port _conmmand/ 2.

Using a nsg_env of NULL is an optimization, which groups together calls to enif _all oc_env,
eni f _make_copy,enif_port_conmand,andeni f _free_env intoonecall. Thisoptimizationisonly useful
when amajority of the terms are to be copied fromenv tonsg_env.

386 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

Returnst r ue if the command is successfully sent. Returnsf al se if the command fails, for example:

e *to_port doesnot refer toalocal port.

« Thecurrently executing process (that is, the sender) is not alive.
e nmsgisinvalid.

Seealso eni f _get | ocal port.

void *enif priv data(ErlNifEnv* env)
Returns the pointer to the private data that was set by | oad or upgr ade.

ERL NIF TERM enif raise exception(ErlNifEnv* env, ERL NIF TERM reason)

Creates an error exception with theterm r eason to be returned from aNIF, and associates it with environment env.
Once a NIF or any function it callsinvokes eni f _r ai se_except i on, the runtime ensures that the exception it
createsis raised when the NIF returns, even if the NIF attempts to return a non-exception term instead.

Thereturn valuefromeni f _rai se_except i on can only be used as the return value from the NIF that invoked
it (directly or indirectly) or bepassedto eni f _i s_excepti on, but not to any other NIF API function.

Seeaso eni f _has_pendi ng_excepti onand eni f_nake_badarg.

void *enif realloc(void* ptr, size t size)

Reallocates memory allocated by eni f _al | oc tosi ze bytes.

Returns NULL if the reallocation fails.

The returned pointer is suitably aligned for any built-in type that fit in the allocated memory.

int enif realloc binary(ErlNifBinary* bin, size t size)

Changesthe size of abinary bi n. The source binary can be read-only, in which caseit isleft untouched and amutable
copy isalocated and assigned to * bi n.

Returnst r ue on success, or f al se if memory alocation failed.

void enif release binary(ErlNifBinary* bin)
Releases abinary obtained from eni f _al | oc_bi nary.

void enif release resource(void* obj)

Removes a reference to resource object obj obtained from enif_all oc_resource. The resource
object is destructed when the last reference is removed. Each cal to enif _rel ease_resource must
correspond to a previous call to eni f _al | oc_resource or enif_keep_resour ce. References made by
eni f _make_r esour ce can only be removed by the garbage collector.

ErlNifRWLock *enif rwlock create(char *name)
Sameas er|l _drv_rw ock create.

void enif rwlock destroy(ErlNifRWLock *rwlck)
Sameas erl _drv_rw ock_destroy.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 387

erl_nif

void enif rwlock rlock(ErlNifRWLock *rwlck)

Sameas er|l _drv_rw ock_rl ock.

void enif rwlock runlock(ErlNifRWLock *rwlck)
Sameas erl _drv_rw ock_runl ock.

void enif rwlock rwlock(ErlNifRWLock *rwlck)
Sameas erl _drv_rw ock_rw ock.

void enif rwlock rwunlock(ErlNifRWLock *rwlck)

Sameas er| _drv_rw ock_rwunl ock.

int enif rwlock tryrlock(ErlNifRWLock *rwlck)
Sameas er| _drv_rw ock_tryrl ock.

int enif rwlock tryrwlock(ErlNifRWLock *rwlck)
Sameas erl _drv_rw ock_tryrw ock.

ERL NIF TERM enif schedule nif(ErINifEnv* env, const char* fun_name, int
flags, ERL NIF TERM (*fp)(ErINifEnv* env, int argc, const ERL NIF TERM
argv[]), int argc, const ERL NIF TERM argv[])

Schedules NIFf p to execute. Thisfunction allows an application to break up long-running work into multiple regular
NIF calls or to schedule a dirty NIF to execute on a dirty scheduler thread.

fun_nane

Provides a name for the NIF that is scheduled for execution. If it cannot be converted to an atom,
eni f _schedul e_ni f returnsabadar g exception.

flags

Must be set to 0 for a regular NIF. If the emulator was built with dirty scheduler support enabled, f | ags
can be set to either ERL_NI F_DI RTY_JOB_CPU BOUND if the job is expected to be CPU-bound, or
ERL_NI F_DI RTY_JOB_| O BOUNDfor jobsthat will be I/O-bound. If dirty scheduler threads are not available
in the emulator, an attempt to schedule such ajob resultsin anot sup exception.

argc andar gv
Can either be the originals passed into the calling NIF, or can be values created by the calling NIF.
The calling NIF must use the return value of eni f _schedul e_ni f asits own return value.

Beawarethat eni f _schedul e_ni f, asitsnameimplies, only schedules the NIF for future execution. The calling
NIF does not block waiting for the scheduled NIF to execute and return. This meansthat the calling NIF cannot expect
to receive the scheduled NIF return value and use it for further operations.

int enif select(ErlNifEnv* env, ErlNifEvent event, enum ErlNifSelectFlags
mode, void* obj, const ErlNifPid* pid, ERL_NIF _TERM ref)

This function can be used to receive asynchronous notifications when OS-specific event objects become ready for
either read or write operations.

388 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

Argument event identifies the event object. On Unix systems, the functions sel ect /pol | are used. The event
object must be a socket, pipe or other file descriptor object that sel ect /pol | can use.

Argument node describes the type of events to wait for. It can be ERL_NI F_SELECT_ READ,
ERL_ N F_SELECT WRI TE or abitwise OR combinationtowait for both. It canalsobeERL_NI F_SELECT STOP
which is described further below. When aread or write event is triggerred, a notification message like thisis sent to
the process identified by pi d:

{select, 0bj, Ref, ready input | ready output}

ready_i nput orready_out put indicatesif the event object is ready for reading or writing.
Argument pi d may be NULL to indicate the calling process.

Argument obj isaresource object obtained fromeni f _al | oc_r esour ce. The purpose of the resource objectsis
asacontainer of the event object to manageits state and lifetime. A handleto the resourceisreceived in the notification
message as Oj .

Argumentr ef must be either areferenceobtained fromer | ang: nake_r ef / 0 or theatomundef i ned. It will be
passed asRef inthenoatifications. If aselectiver ecei ve statement isused to wait for the notification then areference
created just before ther ecei ve will exploit a runtime optimization that bypasses all earlier received messages in
the queue.

The netifications are one-shot only. To receive further notifications of the same type (read or write), repeated callsto
eni f _sel ect must be made after receiving each notification.

Use ERL_NI F_SELECT_STOP as node in order to safely close an event object that has been passed to
eni f _sel ect . Thest op calback of the resource obj will be called when it is safe to close the event object. This
safe way of closing event objects must be used even if all notifications have been received and no further calls to
eni f _sel ect have been made.

The first call to eni f _sel ect for a specific OS event will establish a relation between the event object and
the containing resource. All subsequent calls for an event must pass its containing resource as argument obj .
The relation is dissolved when eni f _sel ect has been called with nrode as ERL_NI F_SELECT _STOP and the
corresponding st op callback has returned. A resource can contain several event objects but one event object can only
be contained within oneresource. A resourcewill not be destructed until al its contained rel ations have been dissol ved.

Useeni f _noni t or _process together with eni f _sel ect to detect failing Erlang processes and prevent
them from causing permanent leakage of resources and their contained OS event objects.

Returns a non-negative value on success where the following bits can be set:

ERL_NI F_SELECT_STOP_CALLED
The stop callback was called directly by eni f _sel ect .
ERL_NI F_SELECT_STOP_SCHEDULED
The stop callback was scheduled to run on some other thread or later by this thread.

Returns a negative value if the call failed where the follwing bits can be set:

ERL_NI F_SELECT | NVALI D_EVENT
Argument event isnot avalid OS event object.
ERL_NI F_SELECT_FAI LED
The system call failed to add the event object to the poll set.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 389

erl_nif

Use bitwise AND to test for specific bits in the return vaue. New significant bits may be added in future releases
to give more detailed information for both failed and successful calls. Do NOT use equallity tests like ==, as that
may cause your application to stop working.

Example:

retval = enif select(env, fd, ERL NIF SELECT STOP, resource, ref);
if (retval < 0) {

/* handle error */
¥

/* Success! */

if (retval & ERL _NIF SELECT STOP CALLED) {
/* ... X/

}

ErlNifPid *enif self(ErlNifEnv* caller_env, ErlNifPid* pid)
Initializesthe Er | Ni f Pi d variable at * pi d to represent the calling process.
Returns pi d if successful, or NULL if cal | er _env isnot aprocess-bound environment.

int enif send(ErlNifEnv* env, ErlNifPid* to_pid, ErlNifEnv* msg_env,
ERL NIF TERM msg)
Sends a message to a process.
env
The environment of the calling process. Must be NULL only if calling from a created thread.
*to pid
The pid of the receiving process. The pid isto refer to a process on the local node.
nsg_env
The environment of the message term. Must be a process-independent environment allocated with
eni f _all oc_env or NULL.
neg
The message term to send.

Returnst r ue if the message is successfully sent. Returnsf al se if the send operation fails, that is:
* *to_piddoesnot refer to an alive local process.
e Thecurrently executing process (that is, the sender) is not alive.

The message environment msg_env with al its terms (including nsg) is invaidated by a successful call
to eni f _send. The environment is to either be freed with enif_free_env of cleared for reuse with
eni f_cl ear_env.

If msg_env issetto NULL, thenmsg termis copied and the original term and its environemt is still valid after the call.

This function is only thread-safe when the emulator with SMP support is used. It can only be used in a non-SMP
emulator from aNIF-calling thread.

| Passingnsg_env asNULL isonly supported as from ERTS 8.0 (Erlang/OTP 19). |

390 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

unsigned enif sizeof resource(void* obj)

Getsthe byte size of resource object obj obtained by eni f _al | oc_r esour ce.

int enif snprintf(char *str, size t size, const char *format, ...)
Similar tosnpri nt f but thisformat string also accepts" %™ , which formats Erlang terms.

void enif system info(ErlNifSysInfo *sys info ptr, size t size)
Sameas driver_system.i nfo.

int enif term to binary(ErlNifEnv *env, ERL_NIF TERM term, ErlNifBinary *bin)

Allocatesanew binary with eni f _al | oc_bi nary and storestheresult of encodingt er maccording to the Erlang
external term format.

Returnst r ue on success, or f al se if the allocation fails.
Seeaso erlang:termto _binary/land enif_binary to term

int enif thread create(char *name,ErlNifTid *tid,void * (*func)(void *),void
*args,ErlNifThreadOpts *opts)

Sameas er| _drv_thread _create.

void enif thread exit(void *resp)
Sameas erl _drv_thread exit.

int enif thread join(EriNifTid, void **respp)
Sameas erl _drv_thread join.

ErlNifThreadOpts *enif thread opts create(char *name)

Sameas er| _drv_thread_opts_create.

void enif thread opts destroy(ErlNifThreadOpts *opts)
Sameas erl _drv_thread opts_destroy.

EriNifTid enif thread self(void)
Sameas erl _drv_thread_sel f.

int enif thread type(void)

Determine the type of currently executing thread. A positive value indicates a scheduler thread while a negative value
or zero indicates another type of thread. Currently the following specific types exist (which may be extended in the
future):

ERL_NI F_THR_UNDEFI NED

Undefined thread that is not a scheduler thread.
ERL_NI F_THR_NORMAL_SCHEDULER

A normal scheduler thread.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 391

erl_nif

ERL_NI F_THR DI RTY_CPU_SCHEDULER
A dirty CPU scheduler thread.

ERL_NI F_THR DI RTY_| O_SCHEDULER
A dirty 1/O scheduler thread.

EriNifTime enif time offset(ErlNifTimeUnit time unit)

Returns the current time offset between Erlang monotonic time and Erlang system time converted into the
time_unit passed asargument.

ti me_unit isthetime unit of the returned value.

Returns ERL_NI F_TI ME_ERRORif called with an invalid time unit argument or if called from a thread that is not
a scheduler thread.

SeeadsoErINifTineandEr I Ni f Ti meUni t.

void *enif tsd get(ErlNifTSDKey key)
Sameas er| _drv_tsd _get.

int enif tsd key create(char *name, ErlNifTSDKey *key)
Sameas erl _drv_tsd_key_create.

void enif tsd key destroy(ErlNifTSDKey key)
Sameas er| _drv_tsd_key destroy.

void enif tsd set(ErlNifTSDKey key, void *data)
Sameas er| _drv_tsd_set.

int enif whereis pid(ErlNifEnv *env, ERL NIF TERM name, ErlNifPid *pid)
Looks up a process by its registered name.

env
The environment of the calling process. Must be NULL only if calling from a created thread.
name
The name of aregistered process, as an atom.
.
pi d
TheEr | Ni f Pi d inwhich the resolved processid is stored.
Onsuccess, sets* pi d tothelocal processregistered with name and returnst r ue. If nane isnot aregistered process,
or isnot an atom, f al se isreturned and * pi d is unchanged.

Works as er | ang: wher ei s/ 1, but restricted to processes. See eni f _wher ei s_port to resolve registered
ports.

int enif whereis port(ErlNifEnv *env, ERL _NIF TERM name, ErlNifPort *port)
Looks up a port by its registered name.

env
The environment of the calling process. Must be NULL only if calling from a created thread.

392 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_nif

name
The name of aregistered port, as an atom.
*port
TheEr | Ni f Port inwhich theresolved port id is stored.

On success, sets* por t to the port registered with name and returnst r ue. If name isnot aregistered port, or is not
an atom, f al se isreturned and * por t isunchanged.

Worksas er | ang: wher ei s/ 1, but restricted to ports. Seeeni f _wher ei s_pi d toresolveregistered processes.

See Also

erlang:load _nif/2

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 393

erl_tracer

erl_tracer

Erlang module

This behavior module implements the back end of the Erlang tracing system. The functions in this module are called
whenever atrace probe is triggered. Both the enabl ed and t r ace functions are called in the context of the entity
that triggered the trace probe. This means that the overhead by having the tracing enabled is greatly effected by how
much timeis spent in these functions. So, do as little work as possible in these functions.

All functions in this behavior must be implemented as NIFs. This limitation can be removed in a future releases.
An example tracer module NIF implementation is provided at the end of this page.

Do not send messages or issue port commandsto the Tr acee in any of the callbacks. Thisis not allowed and can
cause al sorts of strange behavior, including, but not limited to, infinite recursions.

Data Types

trace tag call() =
call | return_to | return_from | exception_ from

trace tag gc() =

gc_minor _start | gc_minor_end | gc_major start | gc_major_end
trace tag ports() =

open |

closed |

link |

unlink |

getting linked |

getting unlinked
trace tag procs() =

spawn |

spawned |

exit |

link |

unlink |

getting linked |

getting unlinked |

register |

unregister
trace tag receive() = 'receive

trace tag running ports() =
in | out | in_exiting | out exiting | out exited

trace tag running procs()

394 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_tracer

in | out | in_exiting | out exiting | out exited
trace tag send() = send | send to non existing process

trace tag() =
trace_tag_send() |
trace_tag_receive() |
trace_tag_call () |
trace_tag_procs() |
trace_tag_ports() |
trace_tag_running_procs() |
trace_tag_running_ports() |
trace_tag_gc()

The different trace tags that the tracer is called with. Each trace tag is described in detail in Mbdul e: trace/ 5.
tracee() = port() | pid() | undefined
The process or port that the trace belongs to.

trace opts() =
#{extra => term(),
match spec result => term(),
scheduler id => integer() >= 0,
timestamp =>
timestamp | cpu timestamp | monotonic | strict monotonic}

The options for the tracee:

ti mestanp
If set the tracer has been requested to include a time stamp.
extra
If set the tracepoint has included additional data about the trace event. What the additional data is depends
onwhich Tr aceTag has been triggered. The ext r a trace data corresponds to the fifth element in the trace
tuples described in erlang:trace/3.
mat ch_spec_resul t
If set the tracer has been requested to include the output of a match specification that was run.
scheduler _id
If set the scheduler id isto be included by the tracer.

tracer state() = term()

The state specified when caling erl ang: trace(Pi dPort Spec, true,
[{tracer, Modul e, Tracer St at e}]) . The tracer stateis an immutable value that ispassedtoer| _tracer
callbacks and is to contain all the data that is needed to generate the trace event.

Callback Functions
The following functions are to be exported fromaner | _t r acer callback module:

Mbdul e: enabl ed/ 3
Mandatory

Modul e: trace/ 5
Mandatory

Modul e: enabl ed _cal |l /3
Optional

Modul e: trace_call/5
Optional

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 395

erl_tracer

Modul e: enabl ed_gar bage_col | ection/ 3

Optional

Modul e: trace_gar bage_col I ection/5
Optional

Modul e: enabl ed_ports/ 3
Optional

Modul e: trace_ports/5
Optional

Modul e: enabl ed_procs/ 3
Optional

Modul e: trace_procs/5
Optional

Modul e: enabl ed _receivel/ 3
Optional

Modul e: trace_receivel/5
Optional

Modul e: enabl ed_runni ng_ports/3
Optional

Modul e: trace_runni ng_ports/5
Optional

Modul e: enabl ed_runni ng_procs/ 3
Optional

Modul e: trace_runni ng_procs/5
Optional

Modul e: enabl ed_send/ 3
Optional

Modul e: trace_send/ 5
Optional

Exports

Module:enabled(TraceTag, TracerState, Tracee) -> Result
Types:
TraceTag = trace_tag() | trace_status
TracerState = tern()
Tracee = tracee()
Result = trace | discard | renove
Thiscallback iscalled whenever atracepoint istriggered. It allowsthetracer to decidewhether atraceisto be generated
or not. This check is made as early as possible to limit the amount of overhead associated with tracing. If t r ace is

returned, the necessary trace datais created and the trace callback of the tracer iscalled. If di scar d isreturned, this
trace call is discarded and no call to trace is done.

trace_st at us isaspecial type of Tr aceTag, which is used to check if the tracer is still to be active. It is called
in multiple scenarios, but most significantly it is used when tracing is started using this tracer. If r enove isreturned
whenthet r ace_st at us ischecked, the tracer is removed from the tracee.

This function can be called multiple times per tracepoint, so it isimportant that it is both fast and without side effects.
Module:enabled call(TraceTag, TracerState, Tracee) -> Result

Types:
TraceTag = trace_tag _call ()

396 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_tracer

TracerState = tern()

Tracee = tracee()

Result = trace | discard | renove
This callback is called whenever atracepoint with traceflagcal | | return_t oistriggered.
If enabl ed_cal | / 3 isundefined, Modul e: enabl ed/ 3 iscalled instead.

Module:enabled garbage collection(TraceTag, TracerState, Tracee) -> Result

Types:
TraceTag = trace_tag gc()
TracerState = term()
Tracee tracee()
Resul t trace | discard | renove

This callback is called whenever atracepoint with trace flag gar bage_col | ect i on istriggered.
If enabl ed_gar bage_col | ecti on/ 3 isundefined, Modul e: enabl ed/ 3 iscaled instead.

Module:enabled ports(TraceTag, TracerState, Tracee) -> Result
Types:

TraceTag = trace_tag_ports()

TracerState = tern()

Tracee tracee()

Result = trace | discard | renove

This callback is called whenever atracepoint with trace flag por t s istriggered.
If enabl ed_port s/ 3 isundefined, Modul e: enabl ed/ 3 iscaled instead.

Module:enabled procs(TraceTag, TracerState, Tracee) -> Result
Types:

TraceTag = trace_tag_procs()

TracerState = tern()

Tracee = tracee()

Result = trace | discard | renove

This callback is called whenever atracepoint with trace flag pr ocs istriggered.
If enabl ed_procs/ 3 isundefined, Modul e: enabl ed/ 3 iscaled instead.

Module:enabled receive(TraceTag, TracerState, Tracee) -> Result
Types:

TraceTag = trace_tag_receive()

TracerState = tern()

Tracee = tracee()

Result = trace | discard | renove

This callback is called whenever atracepoint with traceflag' r ecei ve' istriggered.
If enabl ed_recei ve/ 3 isundefined, Modul e: enabl ed/ 3 iscalled instead.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 397

erl_tracer

Module:enabled running ports(TraceTag, TracerState, Tracee) -> Result
Types.

TraceTag = trace_tag_running_ports()

TracerState = term()

Tracee = tracee()

Result = trace | discard | renove

This callback is called whenever atracepoint with trace flagr unni ng_port s istriggered.
If enabl ed_r unni ng_port s/ 3 isundefined, Modul e: enabl ed/ 3 iscaled instead.

Module:enabled running procs(TraceTag, TracerState, Tracee) -> Result
Types:

TraceTag = trace_tag_runni ng_procs()

TracerState = tern()

Tracee = tracee()

Result = trace | discard | renove

This callback is called whenever atracepoint with trace flag r unni ng_procs | runni ng istriggered.
If enabl ed_r unni ng_pr ocs/ 3 isundefined, Modul e: enabl ed/ 3 iscaled instead.

Module:enabled send(TraceTag, TracerState, Tracee) -> Result
Types:

TraceTag = trace_tag_send()

TracerState = tern()

Tracee = tracee()

Resul t trace | discard | renove

This callback is called whenever atracepoint with trace flag send istriggered.
If enabl ed_send/ 3 isundefined, Modul e: enabl ed/ 3 iscalled instead.

Module:trace(TraceTag, TracerState, Tracee, TraceTerm, Opts) -> Result
Types:
TraceTag = trace_tag()
TracerState = tern()
Tracee = tracee()
TraceTerm = term)
Opts = trace_opts()
Result = ok
This callback is called when a tracepoint is triggered and the Modul e: enabl ed/ 3 callback returnedt r ace. Init
any side effects needed by thetracer areto be done. The tracepoint payload islocated inthe Tr ace Ter m The content

of the Tr aceTer mdepends on which Tr aceTag is triggered. Tr aceTer mcorresponds to the fourth element in
the trace tuples described in er | ang: trace/ 3.

If the trace tuple has five elements, the fifth element will be sent asthe ext r a valuein the Opt s maps.

Module:trace(seq trace, TracerState, Label, SeqTraceInfo, Opts) -> Result
Types:

398 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_tracer

TracerState = tern()
Label = term()
SeqTracelnfo = term)
Opts = trace_opts()
Result = ok

The TraceTag seq_trace is handled dlightly differently. There is no Tr acee for seq_t race, instead the
Label associated withtheseq_trace eventis specified.

For moreinformation on what Label and SeqTr acel nf o canbe, see seq_trace(3).

Module:trace call(TraceTag, TracerState, Tracee, TraceTerm, Opts) -> Result
Types:

TraceTag = trace_tag_call ()

TracerState = tern()

Tracee = tracee()

TraceTerm = term)

Opts = trace_opts()

Result = ok
Thiscallback iscalled when atracepoint istriggered andthe Modul e: enabl ed_cal | / 3 calback returnedt r ace.

Iftrace_cal | /5 isundefined, Modul e: t race/ 5 iscaled instead.

Module:trace garbage collection(TraceTag, TracerState, Tracee, TraceTernm,
Opts) -> Result

Types.
TraceTag = trace_tag _gc()
TracerState = tern()
Tracee = tracee()
TraceTerm = term)
Opts = trace_opts()
Result = ok

This callback is called when a tracepoint is triggered and the Mbdul e: enabl ed_gar bage_col | ecti on/ 3
callback returnedt r ace.

Iftrace_garbage coll ecti on/5 isundefined, Modul e: trace/ 5 iscalled instead.

Module:trace ports(TraceTag, TracerState, Tracee, TraceTerm, Opts) -> Result
Types.

TraceTag = trace_tag()

TracerState = term()

Tracee = tracee()

TraceTerm = term)

Opts = trace_opts()

Result = ok

This callback is called when a tracepoint is triggered and the Mbdul e: enabl ed_port s/ 3 calback returned
trace.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 399

erl_tracer

Iftrace_ports/5isundefined, Modul e: trace/ 5 iscaled instead.

Module:trace procs(TraceTag, TracerState, Tracee, TraceTerm, Opts) -> Result
Types:

TraceTag = trace_tag()

TracerState = tern()

Tracee = tracee()

TraceTerm = term()

Opts = trace_opts()

Result = ok

This callback is called when a tracepoint is triggered and the Modul e: enabl ed_pr ocs/ 3 calback returned
trace.

Iftrace_procs/ 5 isundefined, Modul e: trace/ 5 iscalled instead.

Module:trace receive(TraceTag, TracerState, Tracee, TraceTerm, Opts) ->
Result

Types:
TraceTag = trace_tag_receive()
TracerState = tern()
Tracee = tracee()
TraceTerm = term)
Opts = trace_opts()
Result = ok

This callback is called when a tracepoint is triggered and the Modul e: enabl ed_r ecei ve/ 3 calback returned
trace.

Iftrace_receivel/ 5 isundefined, Modul e: trace/ 5 iscalled instead.

Module:trace running ports(TraceTag, TracerState, Tracee, TraceTerm, Opts) ->
Result

Types:
TraceTag = trace_tag_running_ports()
TracerState = tern()
Tracee = tracee()
TraceTerm = term)
Opts = trace_opts()
Result = ok

This callback is called when atracepoint is triggered and the Modul e: enabl ed_r unni ng_port s/ 3 callback
returnedt r ace.

If t race_runni ng_ports/5isundefined, Modul e: t race/ 5 iscaled instead.

Module:trace running procs(TraceTag, TracerState, Tracee, TraceTerm, Opts) ->
Result

Types:
TraceTag = trace_tag_runni ng_procs()

400 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_tracer

TracerState = tern()
Tracee = tracee()
TraceTerm = term)
Opts = trace_opts()
Result = ok

This callback is called when atracepoint is triggered and the Modul e: enabl ed_r unni ng_pr ocs/ 3 callback
returnedt r ace.

Iftrace_runni ng_procs/ 5 isundefined, Modul e: trace/ 5 iscalled instead.

Module:trace send(TraceTag, TracerState, Tracee, TraceTerm, Opts) -> Result
Types:

TraceTag = trace_tag_send()

TracerState = tern()

Tracee = tracee()

TraceTerm = term)

Opts = trace_opts()

Result = ok
Thiscallback iscalled when atracepoint istriggered andthe Modul e: enabl ed_send/ 3 calback returnedt r ace.

Iftrace_send/ 5 isundefined, Modul e: t race/ 5 iscaled instead.

Erl Tracer Module Example

In this example, a tracer module with a NIF back end sends a message for each send trace tag containing only the
sender and receiver. Using this tracer module, a much more lightweight message tracer is used, which only records
who sent messages to who.

The following is an example session using it on Linux:

$ gcc -I erts-8.0/include/ -fPIC -shared -o erl msg tracer.so erl msg tracer.c
$ erl
Erlang/0TP 19 [DEVELOPMENT] [erts-8.0] [source-ed2b56b] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kerneT

Eshell V8.0 (abort with ~G)
1> c(erl msg tracer), erl msg tracer:load().

ok

2> Tracer = spawn(fun F() -> receive M -> io:format("~p~n",[M]), F() end end).
<0.37.0>

3> erlang:trace(new, true, [send,{tracer, erl msg tracer, Tracer}]).

0

{trace,<0.39.0>,<0.27.0>}

4> {ok, D} = file:open("/tmp/tmp.data", [write]).
{trace,#Port<0.486>,<0.40.0>}
{trace,<0.40.0>,<0.21.0>}
{trace,#Port<0.487>,<0.4.0>}
{trace,#Port<0.488>,<0.4.0>}
{trace,#Port<0.489>,<0.4.0>}
{trace,#Port<0.490>,<0.4.0>}
{ok,<0.40.0>}
{trace,<0.41.0>,<0.27.0>}

5>

erl _nsg_tracer.erl:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 401

erl_tracer

-module(erl msg tracer).
-export([enabled/3, trace/5, load/0]).

load() ->
erlang:load nif("erl msg tracer", []).

enabled(, ,) ->

error.

trace(ro_ ’ ’) ->

error.

erl _nsg_tracer.c:

402 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_tracer

#include <erl nif.h>

/* NIF interface declarations */

static int load(ErINifEnv* env, void** priv_data, ERL_NIF TERM load info);

static int upgrade(ErlNifEnv* env, void** priv_data, void** old priv _data, ERL_NIF TERM load info);
static void unload(ErlNifEnv* env, void* priv_data);

/* The NIFs: */
static ERL_NIF TERM enabled(ErlNifEnv* env, int argc, const ERL NIF TERM argv[]);
static ERL_NIF TERM trace(ErlNifEnv* env, int argc, const ERL NIF TERM argv[]);

static ErlNifFunc nif funcs[] = {
{"enabled", 3, enabled},
{"trace", 5, trace}
}i
ERL NIF INIT(erl msg tracer, nif funcs, load, NULL, upgrade, unload)

static int load(ErINifEnv* env, void** priv_data, ERL _NIF TERM load info)

{
*priv_data = NULL;
return 0;
)
static void unload(ErlNifEnv* env, void* priv_data)
{
)

static int upgrade(ErlNifEnv* env, void** priv_data, void** old priv data,

ERL NIF TERM load info)
{
if (*old priv data != NULL || *priv_data != NULL) {
return -1; /* Don't know how to do that */

if (load(env, priv_data, load info)) {

return -1;
)
return 0;
)
/*

* argv([0]: TraceTag

* argv[1l]: TracerState

* argv([2]: Tracee

*/

static ERL _NIF TERM enabled(ErlNifEnv* env, int argc, const ERL_NIF TERM argv[])

ErlNifPid to pid;
if (enif get local pid(env, argv[l], &to pid))
if ('enif is process alive(env, &to pid))
if (enif is identical(enif make atom(env, "trace status"), argv[0]))
/* tracer is dead so we should remove this tracepoint */
return enif make atom(env, "remove");
else
return enif make atom(env, "discard");

/* Only generate trace for when tracer != tracee */
if (enif_is_identical(argv[1], argv[2]))
return enif make atom(env, "discard");

/* Only trigger trace messages on 'send' */

if (enif is identical(enif make atom(env, "send"), argv[0]))
return enif make atom(env, "trace");

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 403

erl_tracer

/* Have to answer trace status */
if (enif is identical(enif make atom(env, "trace status"), argv[0]))
return enif make atom(env, "trace");

return enif make atom(env, "discard");

}
/*
* argv[0]: TraceTag, should only be 'send'
* argv[1l]: TracerState, process to send {Tracee, Recipient} to
* argv([2]: Tracee
* argv[3]: Message
* argv([4]: Options, map containing Recipient
*/

static ERL NIF TERM trace(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{

EriNifPid to pid;

ERL_NIF_TERM recipient, msg;

if (enif_get local pid(env, argv[1l], &to pid)) {
if (enif get map value(env, argv[4], enif make atom(env, "extra"), &recipient)) {
msg = enif make tuple3(env, enif make atom(env, "trace"), argv[2], recipient);
enif send(env, &to pid, NULL, msg);
}
}

return enif make atom(env, "ok");

404 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

	Erlang Run-Time System Application (ERTS)
	ERTS User's Guide
	Introduction
	Scope
	Prerequisites

	Communication in Erlang
	Passing of Signals
	Synchronous Communication
	Implementation

	Time and Time Correction in Erlang
	New Extended Time Functionality
	Terminology
	Monotonically Increasing
	Strictly Monotonically Increasing
	UT1
	UTC
	POSIX Time
	Time Resolution
	Time Precision
	Time Accuracy
	Time Warp
	OS System Time
	OS Monotonic Time
	Erlang System Time
	Erlang Monotonic Time

	Introduction
	Time Correction
	Time Warp Safe Code
	Time Warp Modes
	No Time Warp Mode
	Single Time Warp Mode
	Multi-Time Warp Mode

	New Time API
	New Erlang Monotonic Time
	Unique Values
	How to Work with the New API
	Retrieve Erlang System Time
	Measure Elapsed Time
	Determine Order of Events
	Determine Order of Events with Time of the Event
	Create a Unique Name
	Seed Random Number Generation with a Unique Value

	Support of Both New and Old OTP Releases

	Match Specifications in Erlang
	Grammar
	Function Descriptions
	Functions Allowed in All Types of Match Specifications
	Functions Allowed Only for Tracing

	Match target
	Variables and Literals
	Execution of the Match
	Differences between Match Specifications in ETS and Tracing
	Tracing Examples
	ETS Examples

	How to Interpret the Erlang Crash Dumps
	General Information
	Reasons for Crash Dumps (Slogan)
	Number of Atoms

	Scheduler Information
	Memory Information
	Internal Table Information
	Allocated Areas
	Allocator
	Process Information
	Port Information
	ETS Tables
	Timers
	Distribution Information
	Loaded Module Information
	Fun Information
	Process Data
	Atoms
	Disclaimer

	How to Implement an Alternative Carrier for the Erlang Distribution

	Introduction
	Writing an Erlang Driver
	Writing an Erlang Interface for the Driver
	Writing a Distribution Module
	Creating Boot Scripts

	The Driver
	Drivers in General
	The Data Structures of the Distribution Driver
	Selected Parts of the Distribution Driver Implementation

	Putting It All Together

	The Abstract Format
	Module Declarations and Forms
	Record Fields
	Representation of Parse Errors and End-of-File

	Atomic Literals
	Patterns
	Expressions
	Qualifiers
	Bitstring Element Type Specifiers
	Associations

	Clauses
	Guards
	Types
	Function Types
	Function Constraints
	Association Types
	Record Field Types

	The Abstract Format after Preprocessing

	tty - A Command-Line Interface
	Normal Mode
	Shell Break Mode

	How to Implement a Driver
	Introduction
	Sample Driver
	Compiling and Linking the Sample Driver
	Calling a Driver as a Port in Erlang
	Sample Asynchronous Driver
	An Asynchronous Driver Using driver_async

	Inet Configuration
	Introduction
	Configuration Data
	User Configuration Example

	External Term Format
	Introduction
	Distribution Header
	ATOM_CACHE_REF
	SMALL_INTEGER_EXT
	INTEGER_EXT
	FLOAT_EXT
	REFERENCE_EXT
	PORT_EXT
	PID_EXT
	SMALL_TUPLE_EXT
	LARGE_TUPLE_EXT
	MAP_EXT
	NIL_EXT
	STRING_EXT
	LIST_EXT
	BINARY_EXT
	SMALL_BIG_EXT
	LARGE_BIG_EXT
	NEW_REFERENCE_EXT
	FUN_EXT
	NEW_FUN_EXT
	EXPORT_EXT
	BIT_BINARY_EXT
	NEW_FLOAT_EXT
	ATOM_UTF8_EXT
	SMALL_ATOM_UTF8_EXT
	ATOM_EXT (deprecated)
	SMALL_ATOM_EXT (deprecated)

	Distribution Protocol
	EPMD Protocol
	Register a Node in EPMD
	Unregister a Node from EPMD
	Get the Distribution Port of Another Node
	Get All Registered Names from EPMD
	Dump All Data from EPMD
	Kill EPMD
	STOP_REQ (Not Used)

	Distribution Handshake
	General
	Definitions
	The Handshake in Detail
	Semigraphic View
	Distribution Flags

	Protocol between Connected Nodes
	New Ctrlmessages for distrvsn = 1 (Erlang/OTP R4)
	New Ctrlmessages for distrvsn = 2
	New Ctrlmessages for distrvsn = 3 (Erlang/OTP R5C)
	New Ctrlmessages for distrvsn = 4 (Erlang/OTP R6)

	Reference Manual
	erl_prim_loader
	get_file/1
	get_path/0
	list_dir/1
	read_file_info/1
	read_link_info/1
	set_path/1

	erlang
	abs/1
	abs/1
	adler32/1
	adler32/2
	adler32_combine/3
	append_element/2
	apply/2
	apply/3
	atom_to_binary/2
	atom_to_list/1
	binary_part/2
	binary_part/3
	binary_to_atom/2
	binary_to_existing_atom/2
	binary_to_float/1
	binary_to_integer/1
	binary_to_integer/2
	binary_to_list/1
	binary_to_list/3
	binary_to_term/1
	binary_to_term/2
	bit_size/1
	bitstring_to_list/1
	bump_reductions/1
	byte_size/1
	cancel_timer/1
	cancel_timer/2
	ceil/1
	check_old_code/1
	check_process_code/2
	check_process_code/3
	convert_time_unit/3
	crc32/1
	crc32/2
	crc32_combine/3
	date/0
	decode_packet/3
	delete_element/2
	delete_module/1
	demonitor/1
	demonitor/2
	disconnect_node/1
	display/1
	element/2
	erase/0
	erase/1
	error/1
	error/2
	exit/1
	exit/2
	external_size/1
	external_size/2
	float/1
	float_to_binary/1
	float_to_binary/2
	float_to_list/1
	float_to_list/2
	floor/1
	fun_info/1
	fun_info/2
	fun_to_list/1
	function_exported/3
	garbage_collect/0
	garbage_collect/1
	garbage_collect/2
	get/0
	get/1
	get_cookie/0
	get_keys/0
	get_keys/1
	get_stacktrace/0
	group_leader/0
	group_leader/2
	halt/0
	halt/1
	halt/2
	hd/1
	hibernate/3
	insert_element/3
	integer_to_binary/1
	integer_to_binary/2
	integer_to_list/1
	integer_to_list/2
	iolist_size/1
	iolist_to_binary/1
	iolist_to_iovec/1
	is_alive/0
	is_atom/1
	is_binary/1
	is_bitstring/1
	is_boolean/1
	is_builtin/3
	is_float/1
	is_function/1
	is_function/2
	is_integer/1
	is_list/1
	is_map/1
	is_number/1
	is_pid/1
	is_port/1
	is_process_alive/1
	is_record/2
	is_record/3
	is_reference/1
	is_tuple/1
	length/1
	link/1
	list_to_atom/1
	list_to_binary/1
	list_to_bitstring/1
	list_to_existing_atom/1
	list_to_float/1
	list_to_integer/1
	list_to_integer/2
	list_to_pid/1
	list_to_port/1
	list_to_ref/1
	list_to_tuple/1
	load_module/2
	load_nif/2
	loaded/0
	localtime/0
	localtime_to_universaltime/1
	localtime_to_universaltime/2
	make_ref/0
	make_tuple/2
	make_tuple/3
	map_size/1
	match_spec_test/3
	max/2
	md5/1
	md5_final/1
	md5_init/0
	md5_update/2
	memory/0
	memory/1
	memory/1
	min/2
	module_loaded/1
	monitor/2
	monitor/2
	monitor/2
	monitor_node/2
	monitor_node/3
	monotonic_time/0
	monotonic_time/1
	nif_error/1
	nif_error/2
	node/0
	node/1
	nodes/0
	nodes/1
	now/0
	open_port/2
	phash/2
	phash2/1
	phash2/2
	pid_to_list/1
	port_call/3
	port_close/1
	port_command/2
	port_command/3
	port_connect/2
	port_control/3
	port_info/1
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_info/2
	port_to_list/1
	ports/0
	pre_loaded/0
	process_display/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/2
	process_flag/3
	process_info/1
	process_info/2
	process_info/2
	processes/0
	purge_module/1
	put/2
	raise/3
	read_timer/1
	read_timer/2
	ref_to_list/1
	register/2
	registered/0
	resume_process/1
	round/1
	self/0
	send/2
	send/3
	send_after/3
	send_after/4
	send_nosuspend/2
	send_nosuspend/3
	set_cookie/2
	setelement/3
	size/1
	spawn/1
	spawn/2
	spawn/3
	spawn/4
	spawn_link/1
	spawn_link/2
	spawn_link/3
	spawn_link/4
	spawn_monitor/1
	spawn_monitor/3
	spawn_opt/2
	spawn_opt/3
	spawn_opt/4
	spawn_opt/5
	split_binary/2
	start_timer/3
	start_timer/4
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	statistics/1
	suspend_process/1
	suspend_process/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_flag/2
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_info/1
	system_monitor/0
	system_monitor/1
	system_monitor/2
	system_profile/0
	system_profile/2
	system_time/0
	system_time/1
	term_to_binary/1
	term_to_binary/2
	throw/1
	time/0
	time_offset/0
	time_offset/1
	timestamp/0
	tl/1
	trace/3
	trace_delivered/1
	trace_info/2
	trace_pattern/2
	trace_pattern/3
	trace_pattern/3
	trace_pattern/3
	trunc/1
	tuple_size/1
	tuple_to_list/1
	unique_integer/0
	unique_integer/1
	universaltime/0
	universaltime_to_localtime/1
	unlink/1
	unregister/1
	whereis/1
	yield/0

	init
	boot/1
	get_argument/1
	get_arguments/0
	get_plain_arguments/0
	get_status/0
	reboot/0
	restart/0
	script_id/0
	stop/0
	stop/1

	zlib
	adler32/2
	adler32/3
	adler32_combine/4
	close/1
	compress/1
	crc32/1
	crc32/2
	crc32/3
	crc32_combine/4
	deflate/2
	deflate/3
	deflateEnd/1
	deflateInit/1
	deflateInit/2
	deflateInit/6
	deflateParams/3
	deflateReset/1
	deflateSetDictionary/2
	getBufSize/1
	gunzip/1
	gzip/1
	inflate/2
	inflate/3
	inflateChunk/1
	inflateChunk/2
	inflateEnd/1
	inflateGetDictionary/1
	inflateInit/1
	inflateInit/2
	inflateReset/1
	inflateSetDictionary/2
	open/0
	safeInflate/2
	setBufSize/2
	set_controlling_process/2
	uncompress/1
	unzip/1
	zip/1

	epmd
	erl
	erlc
	werl
	escript
	erlsrv
	start_erl
	run_erl
	start
	erl_driver
	add_driver_entry()

	driver_alloc()

	driver_alloc_binary()

	driver_async()

	driver_async_port_key()

	driver_binary_dec_refc()

	driver_binary_get_refc()

	driver_binary_inc_refc()

	driver_caller()

	driver_cancel_timer()

	driver_compare_monitors()

	driver_connected()

	driver_create_port()

	driver_demonitor_process()

	driver_deq()

	driver_enq()

	driver_enq_bin()

	driver_enqv()

	driver_failure()

	driver_failure_atom()

	driver_failure_posix()

	driver_failure_eof()

	driver_free()

	driver_free_binary()

	driver_get_monitored_process()

	driver_get_now()

	driver_lock_driver()

	driver_mk_atom()

	driver_mk_port()

	driver_monitor_process()

	driver_output()

	driver_output_binary()

	driver_output_term()

	driver_output2()

	driver_outputv()

	driver_pdl_create()

	driver_pdl_dec_refc()

	driver_pdl_get_refc()

	driver_pdl_inc_refc()

	driver_pdl_lock()

	driver_pdl_unlock()

	driver_peekq()

	driver_peekqv()

	driver_pushq()

	driver_pushq_bin()

	driver_pushqv()

	driver_read_timer()

	driver_realloc()

	driver_realloc_binary()

	driver_select()

	driver_send_term()

	driver_set_timer()

	driver_sizeq()

	driver_system_info()

	driver_vec_to_buf()

	erl_drv_busy_msgq_limits()

	erl_drv_cond_broadcast()

	erl_drv_cond_create()

	erl_drv_cond_destroy()

	erl_drv_cond_name()

	erl_drv_cond_signal()

	erl_drv_cond_wait()

	erl_drv_consume_timeslice()

	erl_drv_convert_time_unit()

	erl_drv_equal_tids()

	erl_drv_getenv()

	erl_drv_init_ack()

	erl_drv_monotonic_time()

	erl_drv_mutex_create()

	erl_drv_mutex_destroy()

	erl_drv_mutex_lock()

	erl_drv_mutex_name()

	erl_drv_mutex_trylock()

	erl_drv_mutex_unlock()

	erl_drv_output_term()

	erl_drv_putenv()

	erl_drv_rwlock_create()

	erl_drv_rwlock_destroy()

	erl_drv_rwlock_name()

	erl_drv_rwlock_rlock()

	erl_drv_rwlock_runlock()

	erl_drv_rwlock_rwlock()

	erl_drv_rwlock_rwunlock()

	erl_drv_rwlock_tryrlock()

	erl_drv_rwlock_tryrwlock()

	erl_drv_send_term()

	erl_drv_set_os_pid()

	erl_drv_thread_create()

	erl_drv_thread_exit()

	erl_drv_thread_join()

	erl_drv_thread_name()

	erl_drv_thread_opts_create()

	erl_drv_thread_opts_destroy()

	erl_drv_thread_self()

	erl_drv_time_offset()

	erl_drv_tsd_get()

	erl_drv_tsd_key_create()

	erl_drv_tsd_key_destroy()

	erl_drv_tsd_set()

	erl_errno_id()

	remove_driver_entry()

	set_busy_port()

	set_port_control_flags()

	driver_entry
	erts_alloc
	erl_nif
	enif_alloc()

	enif_alloc_binary()

	enif_alloc_env()

	enif_alloc_resource()

	enif_binary_to_term()

	enif_clear_env()

	enif_compare()

	enif_compare_monitors()

	enif_cond_broadcast()

	enif_cond_create()

	enif_cond_destroy()

	enif_cond_signal()

	enif_cond_wait()

	enif_consume_timeslice()

	enif_convert_time_unit()

	enif_cpu_time()

	enif_demonitor_process()

	enif_equal_tids()

	enif_free()

	enif_free_env()

	enif_free_iovec()

	enif_get_atom()

	enif_get_atom_length()

	enif_get_double()

	enif_get_int()

	enif_get_int64()

	enif_get_local_pid()

	enif_get_local_port()

	enif_get_list_cell()

	enif_get_list_length()

	enif_get_long()

	enif_get_map_size()

	enif_get_map_value()

	enif_get_resource()

	enif_get_string()

	enif_get_tuple()

	enif_get_uint()

	enif_get_uint64()

	enif_get_ulong()

	enif_getenv()

	enif_has_pending_exception()

	enif_hash()

	enif_inspect_binary()

	enif_inspect_iolist_as_binary()

	enif_inspect_iovec()

	enif_ioq_create()

	enif_ioq_destroy()

	enif_ioq_deq()

	enif_ioq_enq_binary()

	enif_ioq_enqv()

	enif_ioq_peek()

	enif_ioq_size()

	enif_is_atom()

	enif_is_binary()

	enif_is_current_process_alive()

	enif_is_empty_list()

	enif_is_exception()

	enif_is_fun()

	enif_is_identical()

	enif_is_list()

	enif_is_map()

	enif_is_number()

	enif_is_pid()

	enif_is_port()

	enif_is_port_alive()

	enif_is_process_alive()

	enif_is_ref()

	enif_is_tuple()

	enif_keep_resource()

	enif_make_atom()

	enif_make_atom_len()

	enif_make_badarg()

	enif_make_binary()

	enif_make_copy()

	enif_make_double()

	enif_make_existing_atom()

	enif_make_existing_atom_len()

	enif_make_int()

	enif_make_int64()

	enif_make_list()

	enif_make_list1()

	enif_make_list2()

	enif_make_list3()

	enif_make_list4()

	enif_make_list5()

	enif_make_list6()

	enif_make_list7()

	enif_make_list8()

	enif_make_list9()

	enif_make_list_cell()

	enif_make_list_from_array()

	enif_make_long()

	enif_make_map_put()

	enif_make_map_remove()

	enif_make_map_update()

	enif_make_new_binary()

	enif_make_new_map()

	enif_make_pid()

	enif_make_ref()

	enif_make_resource()

	enif_make_resource_binary()

	enif_make_reverse_list()

	enif_make_string()

	enif_make_string_len()

	enif_make_sub_binary()

	enif_make_tuple()

	enif_make_tuple1()

	enif_make_tuple2()

	enif_make_tuple3()

	enif_make_tuple4()

	enif_make_tuple5()

	enif_make_tuple6()

	enif_make_tuple7()

	enif_make_tuple8()

	enif_make_tuple9()

	enif_make_tuple_from_array()

	enif_make_uint()

	enif_make_uint64()

	enif_make_ulong()

	enif_make_unique_integer()

	enif_map_iterator_create()

	enif_map_iterator_destroy()

	enif_map_iterator_get_pair()

	enif_map_iterator_is_head()

	enif_map_iterator_is_tail()

	enif_map_iterator_next()

	enif_map_iterator_prev()

	enif_monitor_process()

	enif_monotonic_time()

	enif_mutex_create()

	enif_mutex_destroy()

	enif_mutex_lock()

	enif_mutex_trylock()

	enif_mutex_unlock()

	enif_now_time()

	enif_open_resource_type()

	enif_open_resource_type_x()

	enif_port_command()

	enif_priv_data()

	enif_raise_exception()

	enif_realloc()

	enif_realloc_binary()

	enif_release_binary()

	enif_release_resource()

	enif_rwlock_create()

	enif_rwlock_destroy()

	enif_rwlock_rlock()

	enif_rwlock_runlock()

	enif_rwlock_rwlock()

	enif_rwlock_rwunlock()

	enif_rwlock_tryrlock()

	enif_rwlock_tryrwlock()

	enif_schedule_nif()

	enif_select()

	enif_self()

	enif_send()

	enif_sizeof_resource()

	enif_snprintf()

	enif_system_info()

	enif_term_to_binary()

	enif_thread_create()

	enif_thread_exit()

	enif_thread_join()

	enif_thread_opts_create()

	enif_thread_opts_destroy()

	enif_thread_self()

	enif_thread_type()

	enif_time_offset()

	enif_tsd_get()

	enif_tsd_key_create()

	enif_tsd_key_destroy()

	enif_tsd_set()

	enif_whereis_pid()

	enif_whereis_port()

	erl_tracer
	Module:enabled/3
	Module:enabled_call/3
	Module:enabled_garbage_collection/3
	Module:enabled_ports/3
	Module:enabled_procs/3
	Module:enabled_receive/3
	Module:enabled_running_ports/3
	Module:enabled_running_procs/3
	Module:enabled_send/3
	Module:trace/5
	trace/5
	Module:trace_call/5
	Module:trace_garbage_collection/5
	Module:trace_ports/5
	Module:trace_procs/5
	Module:trace_receive/5
	Module:trace_running_ports/5
	Module:trace_running_procs/5
	Module:trace_send/5

